[1]刘子心,刘章军.剪力墙结构振动台试验的概率密度演化分析[J].自然灾害学报,2018,(04):137-142.[doi:10.13577/j.jnd.2018.0418]
 LIU Zixin,LIU Zhangjun.Probability density evolution analysis of a shear-wall structure by shaking table test[J].,2018,(04):137-142.[doi:10.13577/j.jnd.2018.0418]
点击复制

剪力墙结构振动台试验的概率密度演化分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年04期
页码:
137-142
栏目:
出版日期:
2018-09-28

文章信息/Info

Title:
Probability density evolution analysis of a shear-wall structure by shaking table test
作者:
刘子心12 刘章军12
1. 防灾减灾湖北省重点实验室(三峡大学), 湖北 宜昌 443002;
2. 三峡大学 土木与建筑学院, 湖北 宜昌 443002
Author(s):
LIU Zixin12 LIU Zhangjun12
1. Hubei Key Laboratory of Disaster Prevention and Reduction, China Three Gorges University, Yichang 443002, China;
2. College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002, China
关键词:
全非平稳地震动随机过程降维表达高层剪力墙结构振动台试验概率密度演化
Keywords:
fully non-stationary ground motionsstochastic processesdimension reductionhigh-rise shear-wall structureshaking table testprobability density evolution
分类号:
TU311;X43;X9
DOI:
10.13577/j.jnd.2018.0418
摘要:
本文将地震动加速度过程分解为两个独立的随机过程:第一个随机过程为已知演变功率谱的全非平稳地震动过程,应用非平稳过程模拟的谱表示-随机函数方法,即可生成代表性样本集合及其平均反应谱;第二个随机过程为修正的非平稳地震动过程,其功率谱密度函数由第一个随机过程的平均反应谱与规范反应谱的拟合误差来计算。通过第二个随机过程演变功率谱的修正,即可生成与规范反应谱拟合一致的全非平稳地震动加速度代表性样本,实现了地震动随机过程的降维表达。得益于该方法,本文生成了7度多遇地震作用下的34条全非平稳地震动加速度代表性样本集合,且每一条代表性样本具有给定的赋得概率,所有代表性样本构成一个完备的概率集。将该代表性样本集合作为一个12层现浇剪力墙缩尺模型结构振动台试验的随机地震激励输入,通过振动台试验测得剪力墙结构的加速度、速度、位移以及层间剪力等动力响应,应用概率密度演化方法,实现现浇高层剪力墙结构在随机地震作用下的概率密度演化分析及动力可靠度评估,为现浇高层剪力墙结构的抗震性能设计提供了有力依据。
Abstract:
The ground motion acceleration process is decomposed into two independent stochastic processes. Specifically, the first one is a fully non-stationary ground motion process of which the evolutionary power spectrum is already known. For this process, the sample realization of ground motions can be conducted by adoptting the spectral representation-random function approach, simultaneously, the average response spectrum of the sample function set can be obtained. The second one is a corrective non-stationary ground motion process, of which the power spectrum density function can be calculated according to the fitting error between the design response spectrum and the average response spectrum of the first stochastic process. Through this treatment, the sample functions of the ground motions compatible with the design response spectrum can be generated. Thus, the dimension reduction of the stochastic ground motion processes is accomplished. Benefiting from the proposed method, 34 representative acceleration time-histories of the 7-degree frequent ground motions are generated. Each representative time-history has an assigned probability, and all the sample functions assemble a complete probability set. Then the generated sample functions are set as the excitation inputs for the shaking table test of a 12-storey cast-in-place shear-wall reduced-scale model structure. The dynamic responses of the shear-wall structure such as acceleration, velocity, displacement and inter-story shear force were measured by the shaking table test. Further, the probability density evolution and dynamic reliability assessment of the cast-in-place high-rise shear-wall structure under stochastic earthquake loading were analyzed using the probability density evolution method, providing a powerful basis for the seismic design of cast-in-place high-rise shear-wall structures.

参考文献/References:

[1] 欧进萍, 牛荻涛, 杜修力. 设计用随机地震动的模型及其参数确定[J]. 地震工程与工程振动, 1991, 11(3):45-54. OU Jinping, NIU Ditao, DU Xiuli. Random earthquake ground motion model and its parameter determination used in aseismic design[J]. Earthquake Engineering and Engineering Dynamics, 1991, 11(3):45-54. (in Chinese)
[2] Yeh C H, Wen Y K. Modeling of nonstationary ground motion and analysis of inelastic structural response[J]. Structural Safety, 1990(8):281-298.
[3] Wang J, Fan L, Qian S, et al. Simulations of non-stationary frequency content and its importance to seismic assessment of structures[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(4):993-1005.
[4] Douglas J, Aochi H. A survey of techniques for predicting earthquake ground motions for engineering purposes[J]. Surveys in Geophysics, 2008, 29(3):187-220.
[5] 柳伟, 周叮, 刘伟庆, 等. 基于概率密度演化的带有环形隔板圆柱形罐体中流体的晃动研究[J]. 振动与冲击, 2015, 34(11):110-115. LIU Wei, ZHOU Ding, LIU Weiqing, et al. Sloshing response of liquid in a cylindrical tank with an annual baffle based on probability density evolution theory[J]. Journal of Vibration & Shock, 2015, 34(11):110-115. (in Chinese)
[6] Liu Z J, Liu Z X, Chen D H. Probability density evolution of a nonlinear concrete gravity dam subjected to nonstationary seismic ground motion[J]. Journal of Mechanics Engineering, 2018, 144(1):04017157.
[7] Lu X L, Wu X H. Study on a new shear wall system with shaking table test and finite element analysis[J]. Earthquake Engineering and Structural Dynamics, 2000, 29(10):1425-1440.
[8] Martinelli P, Filippou F C. Simulation of the shaking table test of a seven-story shear wall building[J]. Earthquake Engineering and Structural Dynamics, 2009, 38(5):587-607.
[9] Cacciola P. A stochastic approach for generating spectrum compatible fully nonstationary earthquakes[J]. Computers and Structures, 2010, 88:889-901.
[10] 刘章军, 刘子心. 基于规范反应谱的全非平稳地震动过程模拟[J]. 振动工程学报, 2017, 30(3):457-465. LIU Zhangjun, LIU Zixin. Simulation of fully non-stationary ground motion based on seismic design response spectrum[J]. Journal of Vabration Engineering, 2017, 30(3):457-465. (in Chinese)
[11] Liu Z J, Liu W, Peng Y B. Random function based spectral representation of stationary and non-stationary stochastic processes[J]. Probabilistic Engineering Mechanics, 2016(45):115-126.
[12] Liu Z J, Liu Z X, Peng Y B. Dimension reduction of Karhunen-Loeve expansion for simulation of stochastic processes[J]. Journal of Sound and Vabration, 2017, 408:168-189.
[13] Deodatis G. Non-stationary stochastic vector processes:seismic ground motion applications[J]. Probabilistic Engineering Mechanics, 1996, 11(3):149-167.
[14] GB50011-2010. Code for Seismic Design of Buildings[S]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[15] Li J, Chen J B. Stochastic Dynamics of Structures[M]. Singapore:John Wiley & Sons, 2009.
[16] Chen J B, Li Jie. The extreme value distribution and dynamic reliability analysis of nonlinear structures with uncertain parameters[J]. Structural Safety, 2007(29):77-93.

备注/Memo

备注/Memo:
收稿日期:2018-04-23;改回日期:2018-05-30。
基金项目:国家自然科学基金项目(51778343,51278282);三峡大学学位论文培优基金项目资助(2018BSPY006)
作者简介:刘子心(1988-),女,博士研究生,主要从事地震灾害作用研究.E-mail:liuzixin1988@163.com
通讯作者:刘章军(1973-),男,教授,博士,主要从事工程振动与防灾减灾研究.E-mail:liuzhangjun@ctgu.edu.cn
更新日期/Last Update: 1900-01-01