[1]郑桐,刘红帅,袁晓铭,等.基于动力离心试验的锚拉桩加固滑坡时程响应分析[J].自然灾害学报,2017,(03):039-47.[doi:10.13577/j.jnd.2017.0305]
 ZHENG Tong,LIU Hongshuai,YUAN Xiaoming,et al.Time history response analysis of landslide mass reinforced by anchorage pile based on dynamic centrifugal test[J].,2017,(03):039-47.[doi:10.13577/j.jnd.2017.0305]
点击复制

基于动力离心试验的锚拉桩加固滑坡时程响应分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2017年03期
页码:
039-47
栏目:
出版日期:
2017-06-28

文章信息/Info

Title:
Time history response analysis of landslide mass reinforced by anchorage pile based on dynamic centrifugal test
作者:
郑桐1 刘红帅2 袁晓铭1 齐文浩1 涂杰文3 兰景岩4
1. 中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 地壳运动监测工程研究中心, 北京 100045;
3. 浙江省交通工程建设集团有限公司, 浙江 杭州 310013;
4. 桂林理工大学, 广西 桂林 541004
Author(s):
ZHENG Tong1 LIU Hongshuai2 YUAN Xiaoming1 QI Wenhao1 TU Jiewen3 LAN Jingyan4
1. Institute of Engineering Mechanics, China Earthquake Administration;Key Laboratory of Earthquake Engineering and Engineering Vibration, China Eorthquake Administration, Harbin 150080, China;
2. National Earthquake Infrastructure Service, Beijing 100045, China;
3. Zhejiang Transportation Engineering Construction Group Co. Ltd, Hangzhou 310013, China;
4. Guilin University of Technology, Guilin 541004, China
关键词:
离心振动台试验锚索抗滑桩加速度响应PGA放大系数滑坡
Keywords:
centrifugal shaking table testanti-slide pile with anchorage cableacceleration responsePGA amplification factorlandslide
分类号:
TU411;TU43;X43
DOI:
10.13577/j.jnd.2017.0305
摘要:
时程响应是发展锚索抗滑桩抗震技术和改进抗震设计方法的基础。基于离心模型试验平台,设计完成了50g离心加速度条件下锚索抗滑桩加固滑坡体的振动台模型试验。输入了4种不同强度的Taft地震波,利用布设在不同位置的微型传感器,记录了桩身和滑坡体的动态时程数据,并以此为基础分析了桩身和滑坡体不同位置的时程响应规律。结果表明,锚索抗滑桩和坡体的时程响应均受输入地震动控制,其动态变化形式与输入地震动基本一致;峰值加速度在基岩内部变化不大,在坡体内部从外向内呈现先减小后增大的趋势;不同高程的PGA放大系数呈现高程效应,坡面存在浅表动力效应;坡体内部PGA放大系数总体上随输入地震动的增大而增加,但在基岩面附近放大效应不明显;锚索的加设有效降低了坡体内部中心位置的加速度放大效应。研究成果可为开发科学合理的锚索抗滑桩抗震设计方法和验证数值模拟成果提供参考依据。
Abstract:
Time history response is the basis of developing the seismic technology and improving the seismic design method of anti-slide pile with anchor. Based on the centrifugal model test platform, dynamic model tests were carried out, used to research the law of landslide reinforced by anchorage pile under the condition of 50g centrifugal acceleration. During the tests, four kinds of Taft wave with different PGA were inputted, and time histories of piles and landslide mass were recorded by micro accelerometers arranged in different locations. Based on this work, the response law of pile and landslide mass at different locations was analyzed. The results show that the time history response of anchor cable anti-slide pile and landslide are controlled by the input ground motion and dynamic change forms are consistent with input ground motion. The peak acceleration changes little in the bedrock, and decreases firstly and then increases from outside to inside of slope. The PGA amplification factors of different elevation present the elevation effect, and superficial dynamic effect exists on the slope surface. The PGA amplification factors of slope inside increase with increase of input ground motion in general, but not obvious in the vicinity of bedrock surface. Because of the anchor cable addition, PGA amplification factors are effectively reduced in the interior central position of the slope. The results of this paper may provide a reference for the development of scientific and reasonable design method of anchor cable anti-slide pile and the verification of numerical simulation results.

参考文献/References:

[1] 郑颖人, 陈祖煜, 王恭先, 等. 边坡与滑坡工程治理[M]. 北京:人民交通出版社, 2010:465-479. ZHENG Yingren, CHEN Zuyu, WANG Gongxian, et al. Engineering Treatment of Slope and Landslide[M]. Beijing:China Communications Press, 2010:465-479. (in Chinese)
[2] 周德培, 张建经, 汤涌. 汶川地震中道路边坡工程震害分析[J]. 岩石力学与工程学报, 2010, 29(3):565-576. ZHOU Depei, ZHANG Jianjing, TANG Yong. Seismic damage analysis of road slopes in wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3):565-576. (in Chinese)
[3] Seed H.B, WhitemanR.V. Design of earth retaining structures for dynamic loads[J]. Lateral Stresses in the Ground and Design of Earth Retaining Structures. ASCE, 1970:103-147.
[4] 沈珠江, 陆培炎. 评当前岩土工程实践中的保守倾向[J]. 岩土工程学报, 1997, 19(4):115-118. SHEN Zhujiang, LU Peiyan. Comment on the conservative tendency in geotechnical engineering practice[J]. Chinese Journal of Geotechnical Engineering, 1997, 19(4):115-118. (in Chinese)
[5] 刘小丽, 张占民, 周德培. 预应力锚索抗滑桩的改进计算方法[J]. 岩石力学与工程学报, 2004, 23(15):2568-2572. LIU Xiaoli, ZHANG Zhanmin, ZHOU Depei. Improved mdethod for computing anti-slding pile with prestressd anchoring cable[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15):2568-2572. (in Chinese)
[6] 曹兴松, 周德培. 软岩高边坡预应力锚索抗滑桩的设计计算[J]. 山地学报, 2005, 23(4):447-452. CAO Xingsong, ZHOU Depei. Design of anti-slide-pile with prestressed anchor rope for high slope of weak rockmass[J]. Journal of Mountain Science, 2005, 23(4):447-452. (in Chinese)
[7] 李凯玲, 门玉明. 锚索抗滑桩与岩土体相互作用研究[J]. 水文地质工程地质, 2006(1):20-22, 26. LI Kailing, MEN Yuming. Study of the interaction among ant-i slide pile, anchor and soil body[J]. Hydrogeology and Engineering Geology, 2006(1):20-22, 26. (in Chinese)
[8] 李德营, 殷坤龙, 陈丽霞, 等. 考虑滑坡岩土体弹性抗力预应力锚索抗滑桩设计方法[J]. 地质科技情报, 2008, 27(6):107-110. LI Deying, YIN Kunlong, CHEN Lixia, et al. Design of prestressed anchor pile with consideration of the reaction force of the soil mass[J]. Geological Science and Technology Information, 2008, 27(6):107-110. (in Chinese)
[9] 蒋良潍, 黄润秋, 许强. 锚索桩设计计算的几个力学问题及有关概念探讨[J]. 岩土力学, 2008, 29(5):1188-1194. JIANG Liangwei, HUANG Runqiu, XU Qiang. Study of several mechanics problems and related concepts in engineering design of anchored slide-resistant piles[J]. Rock and Soil Mechanics, 2008, 29(5):1188-1194. (in Chinese)
[10] 冯玉国, 王渭明, 刘军熙. 预应力锚索抗滑桩结构稳健优化设计[J]. 岩土工程学报, 2009, 31(4):516-520. FENG Yuguo, WANG Weiming, LIU Junxi. Robust optimization design of anti-slide piles with prestressed anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4):516-520. (in Chinese)
[11] 吴润泽, 周海清, 胡源, 等. 基于有限差分原理的预应力锚索抗滑桩改进计算方法[J]. 岩土力学, 2015, 36(6):1791-1800. WU Runze, ZHOU Haiqing, HU Yuan, et al. An improved method for calculating anti-sliding pile with prestressed anchor cable based on finite difference theory[J]. Rock and Soil Mechanics, 2015, 36(6):1791-1800. (in Chinese)
[12] 郑明新, 蒋新龙, 殷宗泽, 等. 预应力锚索抗滑桩工程效果的数值计算评价[J]. 岩土力学, 2007, 28(7):1381-1386. ZHENG Mingxin, JIANG Xinlong, YIN Zongze, et al. Evaluation of effectiveness of prestressed anti-slide cable piles by numerical simulations[J]. Rock and Soil Mechanics, 2007, 28(7):1381-1386. (in Chinese)
[13] 吴润泽, 周海清, 胡源, 等. 基于FLAC3D的锚索抗滑桩滑坡推力分布规律研究[J]. 防灾减灾工程学报, 2013, 33(5):548-555. WU Runze, ZHOU Haiqing, HU Yuan, et al. Research on distribution law of landslide thrust of anchored anti-slide pile based on FLAC3D[J]. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33(5):548-555. (in Chinese)
[14] 陈新泽. 基于FLAC3D预应力锚索抗滑桩作用机制和加固效果研究[J]. 岩土力学, 2009, 30(supp2):499-504. CHEN Xinze. Interaction mechanism and reinforcement effects of prestressed anchorage piles based on FLAC3D[J]. Rock and Soil Mechanics, 2009, 30(supp2):499-504. (in Chinese)
[15] 曲宏略, 张建经, 王富江. 预应力锚索桩板墙地震响应的振动台试验研究[J]. 岩土工程学报, 2013, 35(2):313-320. QU Honglue, ZHANG Jiangjing, WANG Fujiang. Seismic response of prestressed anchor sheet pile wall from shaking table tests[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(2):313-320. (in Chinese)
[16] 曲宏略, 张建经, 朱大鹏. 预应力锚索桩板墙抗震设计计算方法研究[J]. 岩石力学与工程学报, 2013, 32(supp2):4149-4156. QU Honglue, ZHANG Jianjing, ZHU Dapeng. Research on aseismic design of prestressed anchor sheet pile wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(supp2):4149-4156. (in Chinese)
[17] 邓宗伟, 李志勇, 黎永索, 等. 预应力锚索桩板墙动力响应现场试验与数值分析[J]. 铁道科学与工程学报, 2013, 10(3):23-27. DENG Zongwei, LI Zhiyong, LI Yongsuo, et al. Dynamic response field test and numerical analysis of pre-stressed sheet-pile wall[J]. Journal of Railway Science and Engineering, 2013, 10(3):23-27. (in Chinese)
[18] 王年香, 章为民. 混凝土面板堆石坝动态离心模型试验研究[J]. 岩土工程学报, 2003, 25(4):504-507 WANG Nianxiang, ZHANG Weimin. Dynamic centrifuge model test for concrete face rock fill dam[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(4):504-507. (in Chinese)
[19] Chen, Y. M., Kong, L. G., Zhou, Y. G., et al. Development of a Large Geotechnical Centrifuge at Zhejiang University[C]. 7th International Conference on Physical Modelling in Geotechnics. Sarah Springman, Jan Laue & Linda Seward (Editors). Zurich, Switzerland, 2009:223-228.
[20] 涂杰文, 刘红帅, 汤爱平, 等. 基于离心振动台的堆积型滑坡加速度响应特征[J]. 岩石力学与工程学报, 2015, 34(7):1361-1369. TU Jiewen, LIU Hongshuai, TANG Aiping, et al. Acceleration response of colluvial landslide based on centrifugal shaking table test[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7):1361-1369. (in Chinese)
[21] R.S.Steedman, S.P.G.Madabhushi. Wave Propagation in Sand Medium[C]//Proceedings of the 4th International Conference on Seismic Zonation, Stanford, California, 1991.
[22] C.M.HERON, S.K.HAIGH and S.P.G.MADABHUSHI. A new macro-element model encapsulating the dynamic moment-rotation behaviour of raft foundations[J]. Geotechnique, 2015, 65(5):442-451.
[23] 曹德荣, 李霖. 抗滑桩锚索联合体系特性研究[J]. 重庆交通学院学报, 2001, 20(2):78-82. CAO Derong, LI Lin. Study of the property of structure combined prestressing cables with drilling piles[J]. Journal of Chongqing Jiaotong University, 2001, 20(2):78-82. (in Chinese)
[24] 涂杰文. 抗滑桩加固滑坡体地震反应离心机模型试验及分析[D]. 哈尔滨:哈尔滨工业大学, 2015. TU Jiewen. Centrifugal Model Test and Analysis on Seismic Response of Landslide Mass Reinforced by Anti-slde Pile[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-01-09;改回日期:2017-03-20。
基金项目:国家自然科学基金资助项目(41172293;51408559)
作者简介:郑桐(1984-),男,博士研究生,主要从事边(滑)坡动力地震响应方面的研究.E-mail:zhengt0928@163.com
通讯作者:刘红帅(1975-),男,研究员,博士,主要从事边坡稳定性评价与治理、场地震害机制分析与评价方面的研究工作.E-mail:iem-lhs@163.com
更新日期/Last Update: 1900-01-01