[1]邹德磊,孙建刚,崔利富,等.事故型撞击荷载作用下大型LNG储罐穹顶局部破坏形态分析[J].自然灾害学报,2017,(03):080-87.[doi:10.13577/j.jnd.2017.0310]
 ZOU Delei,SUN Jiangang,CUI Lifu,et al.Analysis of local damage pattern of large LNG storage tank dome under accident-type impact load[J].,2017,(03):080-87.[doi:10.13577/j.jnd.2017.0310]
点击复制

事故型撞击荷载作用下大型LNG储罐穹顶局部破坏形态分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2017年03期
页码:
080-87
栏目:
出版日期:
2017-06-28

文章信息/Info

Title:
Analysis of local damage pattern of large LNG storage tank dome under accident-type impact load
作者:
邹德磊12 孙建刚2 崔利富2 王振2
1. 大连海事大学 道路与桥梁工程研究所, 辽宁 大连 116026;
2. 大连民族大学 土木工程学院, 辽宁 大连 116600
Author(s):
ZOU Delei12 SUN Jiangang2 CUI Lifu2 WANG Zhen2
1. Institute of Road and Bridge Engineering, Dalian Maritime University, Dalian 116026, China;
2. College of Civil Engineering, Dalian Nationalities University, Dalian 116600, China
关键词:
LNG储罐穹顶撞击荷载冲击试验破坏形态判断标准
Keywords:
dome of LNG tankimpact loadimpact testdestruction formjudgment standard
分类号:
TU352;P315.9
DOI:
10.13577/j.jnd.2017.0310
摘要:
为了确定事故型撞击荷载作用下大型LNG储罐穹顶的局部破坏形态,以φ101.6 mm NPS法兰冲击能量为参照,选取穹顶局部壳体为靶体,利用等效飞射物弹体自由落体撞击靶体进行了15个工况冲击试验。通过对试验结果分析研究,标定了冲击成坑、冲击震裂、冲击剥落屈曲、冲击侵彻屈曲、冲击贯穿屈曲5种破坏形态,并给出了特征形态图。通过引入薄钢板弹道极限速度对侵彻贯穿屈曲破坏形态的侵彻深度进行修正,给出了以侵彻深度与穹顶厚度比值。这一无量纲参数为基准的破坏形态判断标准。最后,提出了事故型撞击荷载作用下LNG储罐穹顶的破坏等级划分标准,验证了Petry公式和BRL公式用于侵彻深度估算的有效性。
Abstract:
In order to determine the local damage pattern of large LNG storage tank dome under accidental impact load,the impact energy of φ101.6 mm NPS flange was used as a reference, the local shell of the dome was selected as the target. The impact test was carried out in 15 working conditions by using the equivalent projectile freely falling body to hit the target. Through the analysis of the experimental results, the 5 types of failure modes, i.e. impact crater, impact crack, impact spalling buckling, impact penetration buckling and impact run through buckling were calibrated and the characteristic form graph was provided. The penetration depth of impact run-through buckling failure was modified by introducing the thin steel plate ballistic limit velocity. A judgment standard of destruction form was given out based on the ratio of penetration depth to dome thickness. At last, this paper puts forward the damage gradation standard of LNG tank dome under accidental impact load, and varifies effectiveness of the Petry formula and the BRL formula for penetration depth estimation.

参考文献/References:

[1] BS 7777:1993,Flat-bottomed,Vertical,Cylindrical Storage Tanks for Low Temperature Service,Part l-4.Institution B S,1993.
[2] BS EN 14620:2006,Design and Manufacture of Site Built,Vertical,Cylindrical,Flat-bottomed steel Tanks for the Storage of Refrigerated,Liquefied Gases with Operating Temperatures Between 0℃ and-1650℃.Institution B S,2006.
[3] 李金光, 郑建华, 李航, 等. 全容式LNG储罐在飞行物冲击作用下的局部效应验算. 石油工程建设, 2013, 39(4):30-33. LI Jinguang, ZHENG Jianhua, LI Hang, et al. Verifying calculations of local effect of flying object impact on concrete outer tank of full-containment LNG storage tank[J]. Petroleum Engineering Construction, 2013, 39(4):30-33. (in Chinese)
[4] Li QM,Reid SR,Wen HM,Telford Ar.Local impact effects of hard missiles on concrete targets[J]. International Journal of Impact Engineering, 2005, 32(1-4):224-284.
[5] Berriaud C, Sokolovsky A, Gueraud R, et al. Local behaviour of reinforced concrete walls under missile impact.Nucl. Eng. Design, 1978, 45(2):457-469.
[6] Forrestal M J, Altman B S, Cargile J D, et al. An empirical equation for penetration depth of ogive-nose projectile into concrete target. International Journal of Impact Engineering, 1994, 15:395-405.
[7] Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets. Int J Solids Structures, 1997(34):4127-4146.
[8] Kennedy R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects. Nuclear Engineering and Design, 1976, 37:183-203.
[9] Chelapati CV, Kennedy RP, Wall IB. Probabilistic assessment of hazard for nuclear structures. Nuclear Engineering and Design, 1972, 19:333-364.
[10] Luk V K, Forrestal M J. Penetration into semi-infinite reinforced-concrete targets with spherical and ogival-nose projectile. Int J Impact Eng, 1987, 6(4):291-301.
[11] Xu Y, Keer L M, Luk V K. Elastic-cracked model for penetration into unreinforced concrete targets with ogival-nose projectiles. Int J Solids Structures, 1997, 34(12):1479-1491.
[12] L. Mao, S. Barnett, D. Begg, G. Schleyer, G. Wight. Numerical simulation of ultra high performance of fibre reinforced concrete panel subjected to blast loading. Int. J. Impact Eng, 2014, 64:91-100.
[13] J. Wu, S.H. Chew.Field performance and numerical modeling of multi-layer pavement system subject to blast load. Constr. Build Mater, 2014, 52:177-188.
[14] Z.S.Tabatabaei, J.S.Volz, J.Baird, B.P.Gliha, D.I.Keener. Experimental and numerical analyses of long carbon fiber reinforced concrete panels exposed to blast loading. Int.J. Impact Eng, 2013, 57:70-80.
[15] 邓国强,董军,杨秀敏,等.弹丸冲击下钢筋混凝土板的局部破坏形态分析//全国结构工程学术会议,2004:28-31. DENG Guoqiang, DONG Jun, YANG Xiumin, et al. Local Damage Shape Analysis on Reinforced Concrete Slab Under Projectile Impacting//National Conference on Structural Engineering, 2004:28-31. (in Chinese)
[16] 张少增. 中国LNG接收站建设情况及国产化进程. 石油化工建设, 2015(3):14-17. ZHANG Shaozeng. Construction situation and localization process of LNG receiving station in China. Construction of Petroleum and Chemical Engineering, 2015(3):14-17. (in Chinese)
[17] Army Corps of Engineers (ACE). Fundamentals of Protective Structures. Report AT120 AT1207821, Office of the Chief of Engineers, 1946.
[18] National Defence Research Committee(NDRC). Effects of Impact and Explosion. Summary Technical Report of Division, Washington DC, 1946.
[19] Reid SR, Wen HM. Predicting Penetration Cone Scabbing and Perforation of Reinforced Targets Struck by Flated Faced Projectiles. UMIST Report ME/AM/02.01/TE/G/018507/Z,2001.
[20] 许陈虎, 陈斌, 宋殿义. 一种金属薄靶板弹道极限速度的计算公式//全国结构工程学术会议, 2005:453-456. XU Chenhu,CHEN Bin,SONG Dianyi. A Formula for Ballistic Limit Velocity of Thin Metallic Plates//National Conference on Structural Engineering, 2005:453-456. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-02-18;改回日期:2017-03-17。
基金项目:国家自然科学基金项目(51278089)
作者简介:邹德磊(1986-),男,工程师,硕士,主要从事防灾减灾工程及防护工程研究.E-mail:zdl6688@126.com
通讯作者:孙建刚(1959-),男,教授,博士,主要从事防灾减灾工程及防护工程研究.E-mail:sjg728@163.com
更新日期/Last Update: 1900-01-01