[1]张琨,单炜,孙文博,等.不同因素对电化学除氯处理后混凝土残留氯离子分布的影响[J].自然灾害学报,2017,(03):106-112.[doi:10.13577/j.jnd.2017.0313]
 ZHANG Kun,SHAN Wei,SUN Wenbo,et al.Impact of different factors on distribution of residual chlorion in concrete after electrochemical dechlorination treatment[J].,2017,(03):106-112.[doi:10.13577/j.jnd.2017.0313]
点击复制

不同因素对电化学除氯处理后混凝土残留氯离子分布的影响
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2017年03期
页码:
106-112
栏目:
出版日期:
2017-06-28

文章信息/Info

Title:
Impact of different factors on distribution of residual chlorion in concrete after electrochemical dechlorination treatment
作者:
张琨12 单炜1 孙文博3 张桂欣4
1. 东北林业大学, 黑龙江 哈尔滨 150006;
2. 黑龙江建筑职业技术学院, 黑龙江 哈尔滨 150025;
3. 哈尔滨工业大学, 黑龙江 哈尔滨 150001;
4. 中国地震局工程力学研究所, 黑龙江 哈尔滨 150080
Author(s):
ZHANG Kun12 SHAN Wei1 SUN Wenbo3 ZHANG Guixin4
1. Northeast Forestry University, Harbin 150006, China;
2. Heilongjiang College of Construction, Harbin 150025, China;
3. Harbin Institute of Technology, Harbin 150001, China;
4. Institute of Engineering Mechanics, China Earthquake Administration Harbin 150080, China
关键词:
电化学除氯混凝土矿物掺合料电解质溶液离子分布
Keywords:
electrochemical dechlorinationconcretemineral admixtureelectrolyte solutionion distribution
分类号:
TU502
DOI:
10.13577/j.jnd.2017.0313
摘要:
研究了矿物掺合料、施加电压、电解质溶液等因素对混凝土试件在电化学除氯处理后残留氯离子分布的影响规律。试验采用20~60 V稳压电源、两种不同电解质溶液和钛金属网阳极对不同配合比混凝土试件进行了连续14 d的电化学除氯处理,并在试件不同部位取样测试其残余氯离子含量。结果表明:经过电化学除氯处理,混凝土试件中沿着钢筋界面向混凝土外缘方向的氯离子含量逐渐递增,外层残余氯离子浓度约为内层浓度的3至4.5倍;除氯电压越大,则混凝土中内外层氯离子含量的差距越大;相同条件下,Na3BO3溶液的除氯效果优于饱和石灰水溶液,但两者对除氯后试件中氯离子的分布并无明显影响;由于掺硅灰和矿渣提高了混凝土的密实度,导致除氯后混凝土中残留氯离子含量有所增加。
Abstract:
The paper studies the influence law of different factors including mineral admixtures, applied voltage and electrolyte solution on the distribution of the residual chlorion in the concrete after the electrochemical dechlorination treatment. A 14-day electrochemical dechlorination treatment was carried out on a cylindrical concrete specimens with different proportioning by using 20-60 V stabilized power supply, two different electrolyte solutions and titanium metal mesh anode on different parts of the specimens. The results show that the amount of the residual chlorion decreases from the outer layer to the inner layer by a factor of 300%-450% and the gap becomes larger with the increase of the voltage. On equal conditions, the dechlorination effectiveness of Na3BO3 solution is better than that of saturated Ca(OH)2 solution, but both have no obvious effects on the distribution of the residual chlorion. The addition of silicon ash and slag improves the compactness of concrete and also leads to the increase of the content of residual chlorion.

参考文献/References:

[1] Mehta P K, Burrows R W. Building durable structures in the 21st century[J]. Concrete International, 2001, 23(3):57-63.
[2] 金伟良, 赵羽习. 混凝土结构耐久性[M]. 北京:科学出版社, 2002:1-15. JIN Weiling, ZHAO Yuxi. Durability of Concrete Structures[M]. Beijing:China Science Publishing & Media Ltd, 2002:1-15. (in Chinese)
[3] Broomfield J P. Corrosion of Steel in Concrete[M]. New York:Chapman and Hall, 1997:1-60.
[4] Polder R, Vander H J. Electrochemical Realkalisation and Chloride Removal of Concrete, State of the Art, Iaboratory and Field Experience[A]. Proceedings of RILEM Conference, Rehabilitation of Concrete Structures[C]. Melbourne:RILEM, 1992:135-147.
[5] Hansson I L, Hansson C M. Electrochemical extraction of chlorides from concrete part I-a qualitative model of the process[J]. Cement and Concrete Research, 1993, 23(5):1141-1152.
[6] Yeih W, Chang J J, Hung C C. Selecting an adequate procedure for the electrochemical chloride removal[J]. Cement and Concrete Research, 2006, 36(3):562-570.
[7] Miguel A C, María J S, Guillem V. Effect of type of anodic arrangements on efficiency of electrochemical chloride removal from concrete[J]. ACI Materials Journal, 2006, 103(4):243-250.
[8] Fajardo G, Escadeillas G, Arliguie G. Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by "artificial" sea-water[J]. Corrosion Science, 2006, 48(1):110-125.
[9] 邓春林, 陈龙, 熊建波, 等. 电化学脱盐对钢筋混凝土粘结力的影响研究[J]. 华南港工, 2008(2):34-38. DENG Chunlin, CHEN Long, XIONG Jianbo, et al. Effects of electrochemical chloride extraction on the bond strength between steel and concrete[J]. South China Harbour Engineering, 2008(2):34-39. (in Chinese)
[10] J.C. Orellan, G. Escadeillas.Electrochemical chioride extraction:efficiency and side effects[J]. Cement and Concrete Research, 2004(34):227-234.

相似文献/References:

[1]吴波,梁悦欢.高温下混凝土和钢筋强度的统计分析[J].自然灾害学报,2010,(01):136.
 WU Bo,LIANG Yue-huan.Statistic analysis of strengths of concrete and steel bars at elevated temperature[J].,2010,(03):136.
[2]张俊芝,王梁英,刘华挺,等.弯曲荷载对混凝土氯离子扩散与钢筋初锈时间的影响[J].自然灾害学报,2010,(03):013.
 ZHANG Jun-zhi,WANG Liang-ying,LIU Hua-ting,et al.Influence of flexural loading on diffusion of chlorine ion and corrosion initiation time of steel bar in concrete[J].,2010,(03):013.
[3]谢石连,郭连江,杨光丽.某桥墩承台病害分析与处理[J].自然灾害学报,2011,(03):087.
 XIE Shi-lian,GUO Lian-jiang,YANG Guang-li.Problem analysis and treatment for some pier cap[J].,2011,(03):087.
[4]李凤霞,浮海梅.某高层建筑筏板基础混凝土裂缝控制分析[J].自然灾害学报,2009,(03):178.
 LI Feng-xia,FU Hai-mei.Analysis of crack control of raft foundation concrete in a high building[J].,2009,(03):178.
[5]肖新华.混凝土结构抗震鉴定与加固技术及其应用[J].自然灾害学报,2009,(05):138.
 XIAO Xin-hua.Seismic appraisement and strengthening of concrete structure and their application[J].,2009,(03):138.
[6]高延红,伍亚玲,周巧萍,等.氯离子环境下混凝土钢筋坑蚀深度的随机性研究[J].自然灾害学报,2014,(01):221.[doi:10.13577/j.jnd.2014.0130]
 GAO Yanhong,WU Yaling,ZHOU Qiaoping,et al.Study on the randomness of pitting corrosion depth of steel bar in concrete under the chlorine ion environment[J].,2014,(03):221.[doi:10.13577/j.jnd.2014.0130]
[7]张俊芝,庄华夏,黄俊,等.自然潮差环境下掺合料对混凝土氯离子扩散性能衰减的影响[J].自然灾害学报,2014,(06):263.[doi:10.13577/j.jnd.2014.0633]
 ZHANG Junzhi,ZHUANG Huaxia,HUANG Jun,et al.Influence of admixture on attenuation of concrete chlorine diffusivity in the natural tidal range environment[J].,2014,(03):263.[doi:10.13577/j.jnd.2014.0633]
[8]刘文超,曹万林,叶天翔,等.基于循环水控制厚大基础混凝土施工温度裂缝的理论分析[J].自然灾害学报,2015,(06):195.[doi:10.13577/j.jnd.2015.0624]
 LIU Wenchao,CAO Wanlin,YE Tianxiang,et al.Theoretical analysis of temperature crack in mass concrete foundation based on the circulating water method[J].,2015,(03):195.[doi:10.13577/j.jnd.2015.0624]
[9]曹万林,刘文超,叶天翔,等.循环水控制厚大基础混凝土温度裂缝试验研究[J].自然灾害学报,2016,(01):097.[doi:10.13577/j.jnd.2016.0112]
 CAO Wanlin,LIU Wenchao,YE Tianxiang,et al.Experimental study on controlling temperature cracks of mass foundation concrete by circulating water[J].,2016,(03):097.[doi:10.13577/j.jnd.2016.0112]
[10]高延红,张杉,周巧萍,等.自然潮差环境弯曲荷载作用下混凝土氯离子峰值浓度的分布[J].自然灾害学报,2016,(01):103.[doi:10.13577/j.jnd.2016.0113]
 GAO Yanhong,ZHANG Shan,ZHOU Qiaoping,et al.Distribution of peak concentration of chlorion in concrete under flexural load in the natural tidal environment[J].,2016,(03):103.[doi:10.13577/j.jnd.2016.0113]

备注/Memo

备注/Memo:
收稿日期:2017-01-20;改回日期:2017-04-14。
基金项目:国家科技支撑计划课题(2015BAK17B06);中国地震局创新团队发展计划资助(中国大陆地区地震灾害模拟与评估)
作者简介:张琨(1977-),女,副教授,博士研究生.E-mail:zhangkun228@sina.com
更新日期/Last Update: 1900-01-01