[1]张博,任贺贺,陈文礼,等.尖山地区复杂地形下的风场模拟[J].自然灾害学报,2017,(06):022-31.[doi:10.13577/j.jnd.2017.0603]
 ZHANG Bo,REN Hehe,CHEN Wenli,et al.Wind field simulation of Jianshan area under complex terrain[J].,2017,(06):022-31.[doi:10.13577/j.jnd.2017.0603]
点击复制

尖山地区复杂地形下的风场模拟
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2017年06期
页码:
022-31
栏目:
出版日期:
2017-12-08

文章信息/Info

Title:
Wind field simulation of Jianshan area under complex terrain
作者:
张博1 任贺贺2 陈文礼2 李清1
1. 国网输电线路舞动防治技术重点实验室(国网河南省电力公司电力科学研究院), 河南 郑州 450052;
2. 哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150090
Author(s):
ZHANG Bo1 REN Hehe2 CHEN Wenli2 LI Qing1
1. Power Transmission Line Galloping Prevention and Control Technology Laboratory of State Grid(State Grid Henan Electric Power Research Institute), Zhengzhou 450052, China;
2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
关键词:
区域风场模拟复杂地形速度加大风向影响脉动风特性
Keywords:
regional wind field simulationcomplex terrainspeed uptwist effectthe characteristic of fluctuating wind
分类号:
TU312.1;X9;X43
DOI:
10.13577/j.jnd.2017.0603
摘要:
为了得到河南省新密市尖山"真型输电线路"实验基地所在复杂地形下的风场特征:平均风与脉动风特性,本文采用计算流体动力学的方法对尖山"真型输电线路"实验基地所在区域的风场进行数值模拟。数值模拟研究结果表明:平均风速剖面并不符合规范设计的对数和指数风剖面,而是近地面局地"速度加大(speed-up)"现象显著体现,同一高度风速会大于设计风剖面;进一步,平均风向、湍流强度、湍流积分尺度以及Reynolds应力剖面都很好地体现了局地地形的影响作用,其中风向是由于"风向影响(twist-effect)"机制影响。最后,通过分析脉动风速谱随风向的变化规律,得到适合尖山地区风速谱特征。
Abstract:
For obtaining the basic wind characteristics:the mean and fluctuating wind characteristics under the complex terrain conditions of the Jianshan Transmission Line Test Base in Xinmi City, Henan Province, the present study employs a computational fluid dynamics method to numerically simulate the wind field of the region where the Jianshan Transmission Line Test Base locates. The investigation results show that the obtained average wind speed profile does not satisfy to the logarithmic or exponential wind profiles of the design for application, but rather the surface-level "speed-up" phenomenon occur, that means at the same height wind speed will be greater than the design wind profile. Moreover, the average wind direction, turbulence intensity, turbulence integral scale and the Reynolds stress profile all effected by the local terrain; and the wind direction is influenced due to the "twist-effect" mechanism. Finally, the suitable fluctuating wind spectra of Jianshan area is obtained by analyzing the change of the simulated fluctuating wind spectra with the wind yaw angles.

参考文献/References:

[1] Huang H Y, Capps S B, Huang S C, et al. Downscaling near-surface wind over complex terrain using a physically-based statistical modeling approach[J]. Climate Dynamics, 2014, 44(1-2):529-542.
[2] Chu X, Xue L, Geerts B, et al. A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I:observations and model validations[J]. Journal of Applied Meteorology & Climatology, 2015, 53(10):2264-2286.
[3] Feng J, Shen W Z. Wind farm layout optimization in complex terrain:A preliminary study on a Gaussian hill[J]//2014:012146.
[4] Kim H G, Patel V C, Lee C M. Numerical simulation of wind flow over hilly terrain[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2000, 87(1):45-60.
[5] Liu Y, Wang Y, Li L, et al. Numerical weather prediction wind correction methods and its impact on computational fluid dynamics based wind power forecasting[J]. Journal of Renewable & Sustainable Energy, 2016, 8(3):770-778.
[6] Liu Y, Warner T, Liu Y, et al. Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):308-319.
[7] Zajaczkowski F, Haupt S, Long K. Wind Turbine Siting by Using Mesoscale Model Data Assimilation and Computational Fluid Dynamics[C]//Aiaa Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010.
[8] Zajaczkowski F J, Haupt S E, Schmehl K J. A preliminary study of assimilating numerical weather prediction data into computational fluid dynamics models for wind prediction[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2011, 99(4):320-329.
[9] Battista R C, Rodrigues R S, Pfeil M S. Dynamic behavior and stability of transmission line towers under wind forces[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2003, 91(8):1051-1067.
[10] Loredo-Souza A M, Davenport A G. The effects of high winds on transmission lines[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1998, s 74-76(98):987-994.
[11] Momomura Y, Marukawa H, Okamura T, et al. Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1997, 72(1):241-252.
[12] Okamura T, Ohkuma T, Hongo E, et al. Wind response analysis of a transmission tower in a mountainous area[J]. Journal of Wind Engineering & Industrial Aerodynamics, 2003, 91(1):53-63.
[13] Yasui H, Marukawa H, Momomura Y, et al. Analytical study on wind-induced vibration of power transmission towers[J]. Journal of Wind Engineering & Industrial Aerodynamics, 1999, 83(1-3):431-441.
[14] Liu Z, Ishihara T. Numerical study of turbulent flow over complex topography by LES model[C]//The Sixth International Symposium on Computational Wind Engineering, CWE2014, CD-ROM, 2014.
[15] Diebold M, Higgins C, Fang J, et al. Flow over hills:A large-eddy simulation of the bolund case[J]. Boundary-Layer Meteorology, 2013, 148(1):177-194.
[16] Lopes A S, Palma J M L M, Castro F A. Simulation of the Askervein flow. Part 2:Large-eddy simulations[J]. Boundary-Layer Meteorology, 2007, 125(1):85-108.
[17] Deodatis G. Simulation of ergodic multivariate stochastic processes[J]. Journal of Engineering Mechanics, 1996, 122(8):778-787.
[18] Mason P J, Sykes R I. Flow over an isolated hill of moderate slope[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 105(444):383-395.
[19] Taylor P A, Lee R J. Simple guidelines for estimating wind speed variations due to small scale topographic features[J]. Climatol Bull, 1984.
[20] Walmsley J L, Taylor P A, Keith T. A simple model of neutrally stratified boundary-layer flow over complex terrain with surface roughness modulations (MS3DJH/3R)[J]. Boundary-Layer Meteorology, 1986, 36(1-2):157-186.
[21] Walmsley J L, Taylor P A, Salmon J R. Simple guidelines for estimating wind speed variations due to small-scale topographic features-An update[J]. Climatol Bull, 1989.
[22] Gong W, Ibbetson A. A wind tunnel study of turbulent flow over model hills[J]. Boundary-Layer Meteorology, 1989, 49(1-2):113-148.
[23] Li S W, Hu Z Z, Tse K T, et al. Wind direction field under the influence of topography:part Ⅱ:CFD investigations[J]. Wind & Structures An International Journal, 2016, 22(4):477-501.
[24] Weerasuriya A U, Hu Z Z, Li S W, et al. Wind direction field under the influence of topography, part I:A descriptive model[J]. Wind & Structures An International Journal, 2016, 22(4):455-476.
[25] Hutchins N, Chauhan K, Marusic I, et al. Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory[J]. Boundary-Layer Meteorology, 2012, 145(2):273-306.
[26] Ivan M, Monty J P, Marcus H, et al. On the logarithmic region in wall turbulence[J]. Journal of Fluid Mechanics, 2013, 716(2):R3-1, R3-11.

备注/Memo

备注/Memo:
收稿日期:2017-06-24;改回日期:2017-06-26。
基金项目:国家重点研发计划(2016YFC0701107);国家自然科学基金(51378153,51008093)
作者简介:张博(1985-),男,工程师,硕士,主要从事输电线路新型运维技术及输电线路舞动防治技术.E-mail:zhangbo516@163.com
通讯作者:陈文礼(1980-),男,教授,博士,博士生导师,主要从事结构抗风研究.E-mail:cwl_80@hit.edu.cn
更新日期/Last Update: 1900-01-01