[1]张尚荣,谭平,刘良坤.随机结构地震作用下的可靠度计算方法[J].自然灾害学报,2017,(06):087-92.[doi:10.13577/j.jnd.2017.0610]
 ZHANG Shangrong,TAN Ping,LIU Liangkun.Reliability calculation method of stochastic structure under seismic excitation[J].,2017,(06):087-92.[doi:10.13577/j.jnd.2017.0610]
点击复制

随机结构地震作用下的可靠度计算方法
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2017年06期
页码:
087-92
栏目:
出版日期:
2017-12-08

文章信息/Info

Title:
Reliability calculation method of stochastic structure under seismic excitation
作者:
张尚荣1 谭平2 刘良坤3
1. 宁夏大学 土木与水利工程学院, 宁夏 银川 750021;
2. 广州大学 工程抗震研究中心, 广东 广州 510405;
3. 北京工业大学 建筑工程学院, 北京 100124
Author(s):
ZHANG Shangrong1 TAN Ping2 LIU Liangkun3
1. School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China;
2. Earthquake Engineering Research and Test Center, Guangzhou University, Guangzhou 510405, China;
3. School of Civil Engineering, Beijing University of Technology, Beijing 100124, China
关键词:
Gauss-legendre积分Edgeworth级数随机结构统计矩可靠度
Keywords:
Gauss-legendre integralEdgeworth seriesstochastic structurestatistical momentreliability
分类号:
TU352.1;X9
DOI:
10.13577/j.jnd.2017.0610
摘要:
提出了Gauss-legendre积分与Edgeworth级数相结合求解随机结构在确定性地震激励下结构响应的统计矩与动力可靠度。通过对一典型工程结构算例进行分析,仿真结果表明:Gauss-legendre积分计算地震作用下随机结构响应的可靠度具有较高的精度,在维数不超过4维时具有较高的计算效率;通过Gauss-legendre积分结合Edgeworth级数的方法,求解地震作用下随机结构计算简便,只需简单计算即可得到接近Monte-Carlo计算的精度,而且计算效率较高,适用于多变量实际工程结构的可靠度分析。
Abstract:
A method of the combination of Gauss-legendre integral and Edgeworth series is proposed to solve the statistical moment and reliability of stochastic structure under certain seismic excitation. Through numerical simulation of a typical engineering example, it shows that the Gauss-legendre integral method had great precision and higher computational efficiency whose dimension was less than 4, and the combination of Gauss-legendre integral and Edgeworth series which were very simple to solve the statistical moment and reliability and had great precision and higher computational efficiency. The method is applied to reliability analysis of multivariate practical engineering structure.

参考文献/References:

[1] 朱位秋. 随机振动[M]. 北京:人民交通出版社, 1990. ZHU Weiqiu. Random Vibration[M]. Beijing:China Communication Press, 1990. (in Chinese)
[2] 李桂青, 李秋胜. 工程结构时变可靠度理论及其应用[M]. 北京:科学出版社, 2001. LI Guiqing, LI Qiusheng. Engineering Structure Time-varying Reliability Theory and Application[M]. Beijing:Science Press, 2001. (in Chinese)
[3] 陈建兵, 李杰. 复合随机振动系统的动力可靠度分析[J]. 工程力学, 2005, 22(3):52-57. CHEN Jianbing, LI Jie. Dynamic reliability assessment of double random vibration systems[J]. Engineering Mechanics, 2005, 22(3):52-57. (in Chinese)
[4] 李杰, 陈建兵. 随机结构动力反应分析的概率密度演化方法[J]. 力学学报, 2003, 35(4):437-442. LI Jie, CHEN Jianbing. Probability density evolution method for analysis of stochastic structural dynamic response[J]. Acta Mechanica sinica, 2003, 35(4):437-442. (in Chinese)
[5] 陈建兵, 李杰. 非线性随机结构动力可靠度的密度演化方法[J]. 力学学报, 2004, 36(2):196-201. CHEN Jianbing, LI Jie. The probability density evolution method for dynamic reliability assessment of nonlinear stochastic[J]. Acta Mechanica sinica, 2004, 36(2):196-201. (in Chinese)
[6] 陈建兵, 李杰. 基于概率密度演化方法的随机结构可靠度分析[J]. 计算力学学报, 2004, 21(3):285-290. CHEN Jianbing, LI Jie. Reliability analysis of stochastic structures based on probability density evolution method[J]. Chinese Journal of Computational Mechanics, 2004, 21(3):285-290. (in Chinese)
[7] 张义民, 贺向东. 刘巧伶, 等. 任意分布参数的梁结构刚度可靠性灵敏度分析[J]. 计算力学学报, 2007, 24(6):785-789. ZHANG Yimin, HE Xiangdong, LIU Qiaoling, et al. Stiffness reliability-based sensitivity analysis of beam structure with arbitrary distribution parameters[J]. Chinese Journal of Computational Mechanics, 2007, 24(6):785-789. (in Chinese)
[8] CRAMER H. Mathematical Methods of Statistics[M]. NJ:Princeton University Press, 1964.
[9] 李庆杨, 王能超, 易大义. 数值分析[M]. 北京:清华大学出版社, 2008. LI Qingyang, WANG Nengchao, YI Dayi. Numerical Analysis[M]. Beijing:Tsinghua University Press, 2008. (in Chinese)
[10] 吕大刚, 李晓鹏, 王光远. 基于可靠度和性能的结构整体地震易损性分析[J]. 自然灾害学报, 2006, 15(2):107-114. LV Dagang, LI Xiaopeng, WANG Guangyuan. Global seismic fragility analysis of structures based on reliability and performance[J]. Journal of Natural Disasters, 2006, 15(2):107-114. (in Chinese)
[11] 张义民, 贺向东, 刘巧伶, 等. 不完全概率信息的连杆可靠性优化设计[J]. 内燃机学报, 2004(1):86-90. ZHANG Yimin, HE Xiangdong, LIU Qiaoling, et al. Reliability-based optimizing design of connecting rod under the incomplete probability information[J]. Transactions of CSICE, 2004(1):86-90. (in Chinese)
[12] 张义民. 车辆前轴的可靠性灵敏度设计[J]. 强度与环境, 2004(2):40-46. ZHANG Yimin. Reliability-based optimizing design of connecting rod under the incomplete probability information[J]. Structure & Environment Engineering, 2004(2):40-46. (in Chinese)
[13] 张义民, 贺向东, 刘巧伶, 等. 任意分布参数的机械零件的可靠性稳健设计(一):理论部分[J]. 工程设计学报, 2004(5):233-237. ZHANG Yimin, HE Xiangdong, LIU Qiaoling, et al. Reliability-based robust design of mechanical components with arbitrary distribution parameters, part 1:theory[J]. Journal of Engineering Design, 2004(5):233-237. (in Chinese)
[14] 张义民, 贺向东, 刘巧伶, 等. 任意分布参数的机械零件的可靠性稳健设计(二):轴[J]. 工程设计学报, 2004(5):238-242. ZHANG Yimin, HE Xiangdong, LIU Qiaoling, et al. Reliability-based robust design of mechanical components with arbitrary distribution parameters, part 2:axles[J]. Journal of Engineering Design, 2004(5):238-242. (in Chinese)
[15] ZHANG YM, WEN B C, LIU Q L. First passage of uncertain single degree-of-freedom nonlinear oscillators[J]. Computational Methods in Applied Mechanics and Engineering, 1988, 165(4):223-231.

备注/Memo

备注/Memo:
收稿日期:2017-03-15;改回日期:2017-06-28。
基金项目:国家自然科学基金(51608283);宁夏自然科学基金(NZ1629);宁夏大学引进人才科研(BQD2015004)
作者简介:张尚荣(1984-),男,讲师,博士,主要从事结构减振控制研究.E-mail:confidence.5@163.com
通讯作者:刘良坤(1988-),男,博士研究生,主要从事结构减振控制研究.E-mail:869530282@qq.com
更新日期/Last Update: 1900-01-01