[1]莫华美,戴礼云,范峰,等.我国年最大雪深概率分布的优选模型[J].自然灾害学报,2017,(06):102-109.[doi:10.13577/j.jnd.2017.0612]
 MO Huamei,DAI Liyun,FAN Feng,et al.Preferable probabilistic model for annual maximum snow depths in China[J].,2017,(06):102-109.[doi:10.13577/j.jnd.2017.0612]
点击复制

我国年最大雪深概率分布的优选模型
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2017年06期
页码:
102-109
栏目:
出版日期:
2017-12-08

文章信息/Info

Title:
Preferable probabilistic model for annual maximum snow depths in China
作者:
莫华美12 戴礼云3 范峰12 车涛3 洪汉平4
1. 哈尔滨工业大学 结构工程灾变与控制教育部重点实验室, 黑龙江 哈尔滨 150090;
2. 哈尔滨工业大学 土木工程智能防灾减灾工业和信息化部重点实验室, 黑龙江 哈尔滨 150090;
3. 中国科学院寒区旱区环境与工程研究所, 甘肃 兰州 730000;
4. 加拿大西安大略大学, 加拿大 伦敦 N6A 5B9
Author(s):
MO Huamei12 DAI Liyun3 FAN Feng12 CHE Tao3 HONG Hanping4
1. Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China;
2. Key Lab of Smart Prevention and Mitigation of Civil Engineering Disaster of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China;
3. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Science, Lanzhou 730000, China;
4. University of Western Ontario, London N6A 5B9, Canada
关键词:
年最大雪深统计建模极值I型分布对数正态分布优选模型
Keywords:
annual maximum snow depthsstatistical modellingGumbel distributionLog-normal distributionpreferable probabilistic model
分类号:
TU312+.1;TU317+.1;X43;X9
DOI:
10.13577/j.jnd.2017.0612
摘要:
采用我国记录时间长度大于40年的120个气象台站的年最大雪深数据,对我国年最大雪深的概率分布模型进行了统计分析。结果发现,大部分台站的年最大雪深数据更偏向于服从对数正态分布。因此,若需在全国范围内采用单一的概率分布模型对年最大雪压(或雪深)进行统计建模,对数正态分布是更佳选择。采用对数正态分布后,根据不同的拟合方法,120个台站估算得到50年一遇最大雪深(即基本雪深)较之极值I型分布的估算结果平均上升约6%到13%不等。
Abstract:
Annual maximum snow depths (AMSD) from 120 meteorological stations in China, each with at least 40 years of data, are considered to assess the preferred probability model for AMSD. It is found that the lognormal distribution is preferable to the Gumbel distribution for data from most of the considered stations, indicating that if a single distribution is to be adopted for statistical modelling of AMSD across the whole country, the lognormal distribution is better to be used. It is found that, on average, the estimated 50-year return period value of the AMSD by using the lognormal distribution, depending on the different fitting methods, is about 6% to 13% greater than that estimated by using Gumbel distribution.

参考文献/References:

[1] GB50009-2012建筑结构荷载规范[S]. 北京:中国建筑工业出版社, 2012. GB50009-2012 Load Code for the Design of Building Structures[S]. Beijing:China Architecture & Building Press, 2012. (in Chinese)
[2] 建筑结构设计统一规范编委会荷载组. 雪荷载的统计分析[J]. 冶金建筑, 1982(2):61-64.
[3] BS EN 1991-1-3:2003 Eurocode 1-Actions on Structures-Part 1-3:General Actions-Snow Loads[S]. London:BSI, 2003.
[4] NBCC 2010 National Building Code of Canada 2010[S]. Ottawa:National Research Council of Canada, 2010.
[5] AIJ. AIJ Recommendations for Loads on Buildings (English Version)[M]. Tokyo:Architectural Institute of Japan, 2004.
[6] Sanpaolesi L. Scientific Support Activity in the Field of Structural Stability of Civil Engineering Works:Snow Loads:Dept of Structural Engineering, University of Pisa, Final Report Phase I[R]. Brussels:Commission of the European Comminities DGⅢ/D-3, 1998.
[7] Ellingwood B, Redfield R. Ground snow loads for structural design[J]. Journal of Structural Engineering, 1983, 109(4):950-964.
[8] ASCE/SEI 7-10 Minimum Design Loads for Buildings and Other Structures[S]. Reston, Virginia:American Society of Civil Engineers, 2010.
[9] 戴礼云, 车涛. 1999-2008年中国地区雪密度的时空分布及其影响特征[J]. 冰川冻土, 2010, (5):861-866. DAI Liyun, CHE Tao. The spatio-temporal distribution of snow density and its influence factors from 1999 to 2008 in China[J]. Journal of Glaciology and Geocryology, 2010, 32(5):861-866. (in Chinese)
[10] CHE T, XIN L, JIN R, et al. Snow depth derived from passive microwave remote-sensing data in China[J]. Annals of Glaciology, 2008, 49(1):145-154.
[11] DAI L, CHE T, Wang J, et al. Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang, China[J]. Remote Sensing of Environment, 2012, 127:14-29.
[12] Dai L, Che T. Spatiotemporal variability in snow cover from 1987 to 2011 in northern China[J]. Journal of Applied Remote Sensing, 2014, 8(1):84693.
[13] QX/T 53-2007地面气象观测规范第9部分:雪深与雪压观测[S]. 北京:气象出版社, 2007. QX/T 53-2007 Specifications for surface meteorological observation Part 9:Observation of Snow Depth and Snow Pressure[S]. Beijing:China Meteorological Press, 2007. (in Chinese)
[14] Coles S. An Introduction to Statistical Modeling of Extreme Values[M]. London:Springer, 2001.
[15] Ang A H S, Tang W H. Probability Concepts in Engineering[M]. New York:Wiley, 2007.
[16] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 北京:高等教育出版社, 2008.
[17] Hosking J R M. L-Moments:Analysis and estimation of distributions using linear combinations of order statistics[J]. Journal of the Royal Statistical Society. Series B (Methodological), 1990, 52(1):105-124.
[18] 莫华美, 范峰, 洪汉平. 区域频率分析在黑龙江省基本雪压估算中的应用[J]. 建筑结构学报, 2016, 37(10):154-161. MO Huamei, FAN Feng, HONG Hanping. Application of regional frequency analysis in estimation of ground snow load in Heilongjiang province[J]. Journal of Building Structures, 2016, 37(10):154-161. (in Chinese)
[19] Hosking J R M, Wallis J R. Regional Frequency Analysis:an Approach Based on L-moments[M]. Cambridge:Cambridge University Press, 1997.
[20] Hong H P, Li S H, Mara T G. Performance of the generalized least-squares method for the gumbel distribution and its application to annual maximum wind speeds[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 119(8):121-132.
[21] Akaike H. A new look at the statistical model identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6):716-723.
[22] Marty C, Blanchet J. Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics[J]. Climatic Change, 2012, 111(3-4):705-721.
[23] Martins E S, Stedinger J R. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data[J]. Water Resources Research, 2000, 36(3):737-744.

备注/Memo

备注/Memo:
收稿日期:2017-01-03;改回日期:2017-02-21。
基金项目:国家自然科学基金(51478147,41401414)
作者简介:莫华美(1986-),男,博士后,主要从事雪荷载理论与试验研究.E-mail:mohuamei@hit.edu.cn
通讯作者:范峰(1971-),男,教授,博士,主要从事大跨空间结构、轻型钢结构、巨型望远镜结构技术研究.E-mail:fanf@hit.edu.cn
更新日期/Last Update: 1900-01-01