[1]谢文,孙钰苗,孙利民.超高A型桥塔横向地震破坏模式及其控制策略[J].自然灾害学报,2018,(01):127-136.[doi:10.13577/j.jnd.2018.0116]
 XIE Wen,SUN Yumiao,SUN Limin.Damage control strategy with additional energy dissipation components and seismic failure modes for super tall A-shape tower under transverse earthquake[J].,2018,(01):127-136.[doi:10.13577/j.jnd.2018.0116]
点击复制

超高A型桥塔横向地震破坏模式及其控制策略
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年01期
页码:
127-136
栏目:
出版日期:
2018-02-28

文章信息/Info

Title:
Damage control strategy with additional energy dissipation components and seismic failure modes for super tall A-shape tower under transverse earthquake
作者:
谢文1 孙钰苗1 孙利民2
1. 宁波大学 建筑工程与环境学院, 浙江 宁波 315211;
2. 同济大学 土木工程防灾国家重点实验室, 上海 200092
Author(s):
XIE Wen1 SUN Yumiao1 SUN Limin2
1. Faculty of Architectural, Civil Engineering and Environment, Ningbo University, Ningbo 315211, China;
2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
超高桥塔牺牲耗能构件地震损伤破坏模式地震损伤准则极端地震
Keywords:
super tall towerssacrificial energy dissipation componentsseismic damagefailure modesseismic damage criteriaextreme earthquake
分类号:
X9;U442.5+5;TU311.3
DOI:
10.13577/j.jnd.2018.0116
摘要:
以一座超大跨斜拉桥中的超高A型桥塔为对象,采用非线性时程分析方法并引入Park损伤准则和截面曲率延性系数准则,分析横向地震作用下超高A型桥塔的地震损伤与破坏模式,研究横向极端地震作用下附加耗能构件数量、布置间距和材料屈服应力等对超高A型桥塔地震损伤的控制效果。结果表明:在横向极端地震(PGA=1.0 g)作用下,桥塔与上横梁交接处以及塔底附近几乎同时发生损伤甚至破坏,出现双塑性铰的破坏模式,因而从设计上难以利用桥塔屈服后的塑性性能,应在抗震设计中引起足够重视;与原超高A型桥塔相比,附加耗能构件的数量、布置间距以及材料屈服应力均可有效改善其地震损伤,尤其是通过参数优化后的附加耗能构件能完全有效控制超高桥塔的地震损伤,使其满足损伤控制目标。
Abstract:
Nonlinear time history analyses were performed to study the seismic damage and failure modes of a super tall A-shape tower subjected to various ground motion intensities in the transverse direction.Then a proposed damage control strategy, using sacrificial energy dissipation components installed between both tower shafts at the top regions, was studied to mitigate the seismic damage and improve the collapse resistant capacity of the super tall tower. The parameter sensitivity analyses influences of the sacrificial energy dissipation components, such as installing space and yield stress of material,were performed to determined optimal parameters on the seismic damage and failure modes of the super tall tower under extreme ground motion (PGA=1.0 g) in the transverse direction. The results show that the super tall tower experiences an unexpected failure mode with double plastic hinges confined to the tower top and bottom regions, indicating the seismic performance and stiffness after the super tall tower yielding may not further resist the dead load and earthquake load during earthquake.The proposed damage control strategy can significantly reduce the seismic damage of the super tall tower, especially,this control strategy with optimal parameters of the sacrificial components can successfully control the seismic damage of the super tall tower and make the super tall tower satisfy damage control targets according to the seismic damage criteria.

参考文献/References:

[1] 周智杰. 集鹿大橋震害評估與修復之研究[D]. 台湾:台湾大学, 2004:17-19. ZHOU Zhijie. Evaluation and Repaired on Seismic Damage of Chi-Lu bridge[D]. Taiwan:Taiwan University, 2004:17-19. (in Chinese)
[2] Kawatoh C., Unjoh S. Analytical Study on Seismic Performance Evaluation of Long-Span Suspension Bridge Tower[C]//Vancouver, Canada:13th World Conference on Earthquake Engineering, 2004.
[3] Jones M., Treyger S., Pence P. Seismic Analysis of The New Tacoma Narrows Suspension Bridge[C]//Vancouver, Canada:13th World Conference on Earthquake Engineering, 2004.
[4] 胡庆安, 文锋, 刘健新. 斜拉桥在大震作用下桥塔的失稳破坏仿真分析[J]. 西安建筑科技大学学报(自然科学版), 2006, 38(3):349-352. HU Qingan, WEN Feng, LIU Jianxin. Emulation analysis of cable-stayed bridge tower from losing steadiness to destruction under heavy earthquake[J]. Journal Xi’an University of Arch. & Tech. (Natural Science Edition), 2006, 38(3):349-352. (in Chinese)
[5] 段昕智. 强震作用下斜拉桥桥塔纵桥向振动台试验研究[D]. 上海:同济大学, 2012. DUAN Xinzhi. Experimental Study on Seismic Performance of Cable Stayed Bridge Tower Subjected to Longitudinal Strong Ground Motions[D]. Shanghai:Tongji University, 2012. (in Chinese)
[6] 沈星, 叶爱君. 大跨度斜拉桥倒Y型混凝土主塔横向抗震性能分析[J]. 中国公路学报, 2015, 28(11):52-59. SHEN Xing, YE Aijun. Analysis on lateral seismic performance of inverted Y-shaped concrete tower for long span cable-stayed bridges[J]. China Journal of Highway and Transport, 2015, 28(11):52-59. (in Chinese)
[7] 夏修身, 李建中, 管仲国, 等. 斜拉桥桥塔非线性抗震性能研究[J]. 中国公路学报, 2016, 29(3):66-72, 81. XIA Xiushen, LI Jianzhong, GUAN Zhongguo, et al. Nonlinear seismic performance investigation of cable-stayed bridge towers[J]. China Journal of Highway and Transport, 2016. 29(3):66-72,81. (in Chinese)
[8] Tang M.C., Manzanarez R., Nader M., et al. Replacing the East Bay Bridge[J]. Civil Engineering, 2000, 70(9):38-43.
[9] Combault J., Pecker A., Teyssandier J.-P., et al. Rion-antirion bridge, greece-concept, design, and construction[J]. Structural Engineering International, 2005, 15(1):22-27.
[10] McDaniel C.C., Seible F. Influence of inelastic tower links on cable-supported bridge response[J]. Journal of Bridge Engineering, 2005, 10(3):272-280.
[11] Vader T.S., McDaniel C.C. Influence of dampers on seismic response of cable-supported bridge towers[J]. Journal of Bridge Engineering, 2007, 12(3):373-379.
[12] Abdel Raheem S.E., Hayashikawa T. Parametric study on steel tower response of cable-stayed bridges under great earthquake ground motion[J]. Structural Engineering/Earthquake Engineering, 2003(20):25-41.
[13] 夏修身, 李建中, 徐艳, 等. 横梁屈服对斜拉桥横向地震反应的影响[J]. 华南理工大学学报:自然科学版, 2014,42(5):84-89. XIA Xiushen, LI Jianzhong, XU Yan, et al. Influence of crossbeam yielding on transverse seismic response of cable-supported bridge[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(5):84-89. (in Chinese)
[14] 谢文, 孙利民. 超大跨斜拉桥横向地震破坏模式与损伤控制分析[J]. 振动工程学报, 2013, 26(6):915-926. XIE Wen, SUN Limin. Seismic failure patterns and damage control of super-long-span cable-stayed bridges in lateral direction[J]. Journal of Vibration Engineering, 2013, 26(6):915-926. (in Chinese)
[15] Park Y.-J., Ang A.H.S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4):722-739.
[16] Kunnath S.K., Reinhorn A.M., Lobo R.F. IDARC version 3.0:A Program for the Inelastic Damage Analysis of RC Structures[R]. Buffalo NY.:National Center for Earthquake Engineering Research, State University of New York, 1992.
[17] Park Y.J., Ang A.H.S., Wen Y.K., Damage-limiting aseismic design of buildings[J]. Earthquake Spectra, 1987(3):1-26.
[18] Kowalsky M.J., Direct displacement-based design A seismic Design Methodology and its Application to Concrete Bridges[D]. San Diego:University of California, 1997.
[19] 焦驰宇. 基于性能的大跨斜拉桥地震易损性分析[D]. 上海:同济大学, 2008. JIAO Chiyu. Performance-based Seismic Fragility Analysis for Long-span Cable-Stayed Bridges[D]. Shanghai:Tongji University, 2008. (in Chinese)
[20] 谢文. 考虑地震损伤控制的超大跨斜拉桥结构体系研究[D]. 上海:同济大学, 2013. XIE Wen. Study on Structural System with Seismic Damage Control for Super Long-Span Cable-Stayed Bridge[D]. Shanghai:Tongji University, 2013. (in Chinese)
[21] JTG/T B02-01-2008公路桥梁抗震设计规范[S]. 北京:人民交通出版社, 2008. JTG/T B02-01-2008 Guideline for Seismic Design of Highway Bridges[S]. Beijing:China Communications Press, 2008. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-04-27;改回日期:2017-07-16。
基金项目:国家自然科学基金(51608282,91515101-5,91315301-5);浙江省自然科学基金(LY15E080011)
作者简介:谢文(1981-),男,讲师,博士,硕士生导师,主要从事桥梁抗震与振动控制研究.Email:xiewen@nbu.edu.cn
更新日期/Last Update: 1900-01-01