[1]张家豪,周丰年,程和琴,等.基于多模态传感器系统的长江下游窝崩边坡稳定性分析[J].自然灾害学报,2018,(01):155-162.[doi:10.13577/j.jnd.2018.0119]
 ZHANG Jiahao,ZHOU Fengnian,CHENG Heqin,et al.Stability analysis on arc collapsing channel slope in the lower reaches of the Yangtze River based on multimodal sensor system[J].,2018,(01):155-162.[doi:10.13577/j.jnd.2018.0119]
点击复制

基于多模态传感器系统的长江下游窝崩边坡稳定性分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年01期
页码:
155-162
栏目:
出版日期:
2018-02-28

文章信息/Info

Title:
Stability analysis on arc collapsing channel slope in the lower reaches of the Yangtze River based on multimodal sensor system
作者:
张家豪1 周丰年2 程和琴1 石盛玉1 周权平3 姜月华3
1. 华东师范大学 河口海岸学国家重点实验室, 上海 200062;
2. 长江水利委员会 长江口水文水资源勘测局, 上海 200136;
3. 中国地质调查局 南京地质调查中心, 江苏 南京 210016
Author(s):
ZHANG Jiahao1 ZHOU Fengnian2 CHENG Heqin1 SHI Shengyu1 ZHOU Quanping3 JIANG Yuehua3
1. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
2. Changjiang Estuary Bureau of Hydrology and Water Resources Survey, Changjiang Water Resources Commission, Shanghai 200136, China;
3. China Nanjing Center, China Geological Survey, Nanjing 210016, China
关键词:
长江多模态传感器多源数据融合边坡失稳窝崩
Keywords:
Yangtze Rivermultimodal sensor systemmulti-source data fusionchannel slope failurearc collapsing
分类号:
X9;X43;TV143+.3
DOI:
10.13577/j.jnd.2018.0119
摘要:
2016年9月利用SeaBat-7125多波束测深仪、Riegl-VZ-4000三维激光扫描仪、Edgetech-3100p浅地层剖面仪、双频ADCP、Trimble-差分GPS、RTK等组成的多模态传感器系统,对长江铜陵太阳洲水道凹岸河段窝崩边坡的沉积地貌和水动力特征进行陆上与水下联合测量和三维地形数据的融合研究,计算分析边坡整体稳定性及其发展趋势。结果表明:该河段发育的窝崩呈内凹型三级阶梯状冲蚀结构,陆上边坡坡比0.09~0.25,水下边坡坡比0.33~0.55,窝崩坑崩坍土方量15 246 m3,坡脚和近岸区均存在崩坍堆积体。坡脚表层沉积物属细砂-中砂质地,中值粒径为152.7 μm,窝崩区及近岸区堆积层厚度3~5 m。窝崩坑内水流呈直径50 m的竖轴回流,表层平均流速0.22 m/s,中层平均流速0.30 m/s,底层平均流速0.14 m/s,其对边坡土体持续淘刷,并和近岸堆积体共同作用使窝崩朝西北向环形扩展,边坡稳定性较差。
Abstract:
Measurements of arc collapsing channel slope in Tongling reach of the Yangtze River were made in September 2016. We deployed integrated SeaBat-7125 multi-beam sonar, Riegl-VZ-4000 terrestrial laser scanner, Edgetech-3100p sub-bottom profiler, ADCP, Trimble-DGPS and RTK to build a multimodal sensor system to directly measure morphological, hydrodynamic and sedimentary characteristics of the arc collapsing area. We integrated the point cloud data of submerged portions of the slope with the non-submerged portions to achieve visualization of 3D morphology of channel slope. Then we evaluate the stability and development trend of the arc collapsing with measurement results. The results show that the arc collapsing is concave with three ladder-like distribution in morphological characteristics, slopes of the non-submerged portions are between 0.09~0.25, while the submerged slopes have reached 0.33~0.55. The collapsed bank material is 15 245.8 m3 and submerged blocks of failed bank materials which is 3~5 meters thick were found at the bank toe. The riverbed is mainly formed with fine sand and medium sand, of which the medium particle size is 152.7 μm. ADCP data reveals that the recirculating flow with spead of 0.14~0.30 m/s is created within the arc collapsing and the combined effects of large-scale recirculation flow and the submerged slump block, therefore the location of erosion at the north-west embayment and the stability of the arc collapsing is poor.

参考文献/References:

[1] 唐金武, 邓金运, 由星莹, 等. 长江中下游河道崩岸预测方法[J]. 四川大学学报(工程科学版), 2012, 44(1):75-81. TANG Jinwu, DENG Jinyun, YOU Xingying, et al. Forecast method for bank collapse in middle and lower Yangtze river[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(1):75-81. (in Chinese)
[2] 王延贵, 匡尚富. 河岸崩塌类型与崩塌模式的研究[J]. 泥沙研究, 2014(1):13-20. WANG Yangui, KUANG Shangfu. Study of types and collapse modes of bank failures[J]. Journal of Sediment Research, 2014(1):13-20. (in Chinese)
[3] Osman A M, Thorne C R. Riverbank stability analysis. I:Theory[J]. Journal of Hydraulic Engineering, 1988, 114(2):134-150.
[4] Simon A, Collison A J C. Quantifying the mechanical and hydrologic effects of riparian vegetation on stream bank stability[J]. Earth Surface Processes & Landforms, 2002, 27(5):527-546.
[5] 王博, 姚仕明, 岳红艳. 基于BSTEM的长江中游河道岸坡稳定性分析[J]. 长江科学院院报, 2014, 31(1):1-7. WANG Bo, YAO Shiming, YUE Hongyan. Stability analysis for typical riverbank slope in the middle reach of Yangtze River by BSTEM[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(1):1-7. (in Chinese)
[6] 冉冉, 刘艳锋. 利用BSTEM模型分析库岸边坡形态对其稳定性的影响[J]. 地下水, 2011, 33(2):162-165. RAN Ran, LIU Yanfeng. Analysis of the impact of reservoir bank geometry on the stability via BSTEM model[J]. Ground Water, 2011, 33(2):162-165. (in Chinese)
[7] Hackney C, Best J, Leyland J, et al. Modulation of outer bank erosion by slump blocks:disentangling the protective and destructive role of failed material on the three-dimensional flow structures[J]. Geophysical Research Letters, 2015, 42(24):10663-10670.
[8] Leyland J, Hackney C R, Darby S E, et al. Extreme flood-driven fluvial bank erosion and sediment loads:direct process measurements using integrated mobile laser scanning(MLS) and hydro-acoustic techniques[J]. Earth Surface Processes & Landforms, 2017, 42(2):334-346.
[9] 黎礼刚. 长江中下游干流河道崩岸统计及存在的问题[J]. 水利水电快报, 2007, 28(2):11-12. LI Ligang. The statistics of bank failure and problem in middle and lower Yangtze river[J]. Water Resources and Hydropower Express, 2007, 28(2):11-12. (in Chinese)
[10] 高清洋, 李旺生, 杨阳, 等. 长江中下游河道崩岸研究现状及展望[J]. 水运工程, 2016(8):99-105. GAO Qingyang, LI Wangsheng, YANG Yang, et al. Research progress and prospects of bank collapse in middle and lower reaches of the Yangtze river[J]. Port & Waterway Engineering, 2016(8):99-105. (in Chinese)
[11] 唐金武, 由星莹, 李义天, 等. 三峡水库蓄水对长江中下游航道影响分析[J]. 水力发电学报, 2014, 33(1):102-107. TANG Jinwu, YOU Xingying, LI Yitian, et al. Impacts of the operation of Three Gorges reservoir on navigation conditions in middle and lower Yangtze river[J]. Journal of Hydroelectric Engineering, 2014, 33(1):102-107. (in Chinese)
[12] 肖诗荣, 管宏飞, 明成涛. 三峡水库清水下泄对宜昌段岸坡稳定性的影响[J]. 人民长江, 2012, 43(s2):87-90. XIAO Shirong, GUAN Hongfei, MING Chengtao. Impacts of the clean water from Three Gorges on bank stability in Yichang reach of the Yangtze river[J]. Yangtze River, 2012, 43(s2):87-90. (in Chinese)
[13] 姚仕明, 何广水, 卢金友. 三峡工程蓄水运用以来荆江河段河岸稳定性初步研究[J]. 泥沙研究, 2009(6):24-29. YAO Shiming, HE Guangshui, LU Jinyou. Preliminary study on bank stability in Jingjiang reach since operation of the Three Gorges Project[J]. Journal of Sediment Research, 2009(6):24-29. (in Chinese)
[14] 姚仕明, 何广水, 卢金友. 三峡工程蓄水运用以来长江中游干流河道河岸稳定性初步研究[C]//湖北省水利学会. "三峡工程建成后对长江中游的影响"专题论坛——2007中国科协年会分论坛之十论文集. 武汉:湖北省水利学会, 2007:36-42. YAO Shiming, HE Guangshui, LU Jinyou. Preliminary Study on Bank Stability in Middle Reaches of the Yangtze River Since Operation of the Three Gorges Project[C]//Hydraulic Engineering Society of Hubei Province. A forum of the Influence of the Three Gorges Project on the Middle Reaches of the Yangtze River, Annual Meeting of China Association for Science and Technology. Wuhan:Hydraulic Engineering Society of Hubei Province, 2007:36-42. (in Chinese)
[15] 冯源, 王敏, 廖小永, 等. 三峡水库蓄水后铜陵河段演变特点及趋势分析[J]. 人民长江, 2012, 43(5):89-92. FENG Yuan, WANG Min, LIAO Xiaoyong, et al. Evalution characteristics and trends of Tongling reach after impoundment of Three Gorges Reservoir[J]. Yangtze River, 2012, 43(5):89-92. (in Chinese)
[16] 唐金武, 由星莹, 侯卫国, 等. 长江下游马鞍山河段演变趋势分析[J]. 泥沙研究, 2015, (1):30-35. TANG Jinwu, YOU Xingying, HOU Weiguo, et al. Fluvial processes trend of Ma’anshan reach in lower Yangtze river[J]. Journal of Sediment Research, 2015(1):30-35. (in Chinese)
[17] 刘东风. 三峡工程蓄水以来安徽长江河势变化及崩岸情况[J]. 江淮水利科技, 2010(5):13-15. LIU Dongfeng. Evolution characteristics and bank failure of Anhui reach after impoundment of Three Gorges Reservoir[J]. Jianghuai Water Resources Science and Technology, 2010(5):13-15. (in Chinese)
[18] 司国良, 於邦生. 安徽省境内长江重点河段整治浅议[J]. 人民长江, 2002, 33(4):25-27. SI Guoliang, YU Bangsheng. Preliminary discussion on regulation of the key reaches of Anhui reach in Yangtze river[J]. Yangtze River, 2002, 33(4):25-27. (in Chinese)
[19] 钱伟伟. 基于三维激光扫描系统的崇明东滩潮滩地形测量研究[D]. 上海:华东师范大学, 2016. QIAN Weiwei. Topographic Mapping of Chongming Dongtan Tidal Flat with a Terrestrial Laser Scanner[D]. Shanghai:East China Normal University, 2016. (in Chinese)
[20] 张幸农, 应强, 陈长英, 等. 江河崩岸的概化模拟试验研究[J]. 水利学报, 2009, 40(3):263-267. ZHANG Xingnong, YING Qiang, CHEN Changying, et al. Generalized model study on mechanism of riverbank failure[J]. Shuili Xuebao, 2009, 40(3):263-267. (in Chinese)
[21] 石盛玉, 程和琴, 郑树伟, 等. 三峡截流以来长江洪季潮区界变动河段冲刷地貌[J]. 海洋学报, 2017, 39(3):85-95. SHI Shengyu, CHENG Heqin, ZHENG Shuwei, et al. Erosional topography of the tidal limit in the Yangtze river in flood seasons after the river closure at Three Gorges[J]. Haiyang Xuebao, 2017, 39(3):85-95. (in Chinese)
[22] 王张峤. 三峡封坝前长江中下游河床沉积物分布及河床稳定性模拟研究[D]. 上海:华东师范大学, 2006. WANG Zhangqiao. Sediment Distribution and Before-dam Study in Middle and Lower Yangtze River Stability[D]. Shanghai:East China Normal University, 2006. (in Chinese)
[23] 余文畴, 卢金友. 长江河道崩岸与护岸[M]. 北京:中国水利水电出版社, 2008:260. YU Wenchou, LU Jinyou. Bank Collapse and Protection of Yangtze River[M]. Beijing:China Water & Power Press, 2008:260. (in Chinese)
[24] 余文畴, 苏长城. 长江中下游"口袋型"崩窝形成过程及水流结构[J]. 人民长江, 2007, 38(8):156-159. YU Wenchou, SU Changcheng. Forming process of"Pocket-Shape" caved nest and flow structure in the middle and lower reaches of Yangtze river[J]. Yangtze River, 2007, 38(8):156-159. (in Chinese)
[25] 王媛, 李冬田. 长江中下游崩岸分布规律及窝崩的平面旋涡形成机制[J]. 岩土力学, 2008, 29(4):919-924. WANG Yuan, LI Dongtian. Exploration of distributed law of bank collapsing and plane eddy mechanism of arc collapsing along middle-lower Yangtze river[J]. Rock and Soil Mechanics, 2008, 29(4):919-924. (in Chinese)

相似文献/References:

[1]李永和.长江防洪问题的几点认识[J].自然灾害学报,2005,(02):050.
 LI Yong-he.Pondering on Yangtse River flood control[J].,2005,(01):050.

备注/Memo

备注/Memo:
收稿日期:2017-04-12;改回日期:2017-05-10。
基金项目:国家自然科学基金(41476075);中国地质调查局项目(DD20160246)
作者简介:张家豪(1991-),男,硕士研究生,主要从事河口海岸工程地貌研究.E-mail:234276327@qq.com
通讯作者:程和琴,女,博士,教授,主要从事河口海岸工程地貌与环境研究.E-mail:hqch@sklec.ecnu.edu.cn
更新日期/Last Update: 1900-01-01