[1]阳富强,朱伟方,刘晓霞.硫化矿石自燃倾向性分级的云模型及其应用[J].自然灾害学报,2018,(01):208-214.[doi:10.13577/j.jnd.2018.0124]
 YANG Fuqiang,ZHU Weifang,LIU Xiaoxia.Cloud model and its application of classifying spontaneous combustion tendency of sulfide ores[J].,2018,(01):208-214.[doi:10.13577/j.jnd.2018.0124]
点击复制

硫化矿石自燃倾向性分级的云模型及其应用
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年01期
页码:
208-214
栏目:
出版日期:
2018-02-28

文章信息/Info

Title:
Cloud model and its application of classifying spontaneous combustion tendency of sulfide ores
作者:
阳富强 朱伟方 刘晓霞
福州大学 环境与资源学院, 福建 福州 350116
Author(s):
YANG Fuqiang ZHU Weifang LIU Xiaoxia
College of Environment and Resources, Fuzhou University, Fuzhou 350116, China
关键词:
硫化矿石自燃倾向性等级熵权法云模型
Keywords:
sulfide oresgrade of spontaneous combustion tendencyentropy methodcloud model
分类号:
X925
DOI:
10.13577/j.jnd.2018.0124
摘要:
为了科学判定高硫矿床开采中硫化矿石的自燃倾向性等级,选取了吸氧速度常数、自热点、着火点3个测定指标,建立了基于熵权法和云模型的硫化矿石自燃倾向性分级模型。将硫化矿石自燃倾向性测定指标及分级标准转化为正态云分级标准,采用熵权法对各个指标的实际测试值进行指标赋权;以模糊子集B的最大隶属度原则为依据,判定各个矿样的自燃倾向性等级。利用国内某典型矿山的10组代表性矿样对该模型的可行性进行检验,所得分类结果与多因素综合比较法的判定结果相一致。该模型能够提高矿样自燃倾向性等级划分的准确性,并且为有效指导高硫矿山自燃火灾的防治工作提供了一种新方法。
Abstract:
In order to determine the grade of spontaneous combustion tendency of sulfide ores in sulfur-rich ore deposits scientifically, three determination indexes were selected,including the oxygen absorption rate on average, self-heating point, and ignition point. The classification model of spontaneous combustion tendency of sulfide ores was established based on entropy weight and the cloud model. The determination index of spontaneous combustion tendency of sulfide ores and the classification standard were transformed into normal cloud classification standard. The index weight of actual test value for each index were empowered by entropy method. The level of spontaneous combustion tendency of each sample was determined based on the principle of maximum membership degree of fuzzy subset B. The feasibility of this model was confirmed by using 10 representative samples from a typical mine in China. The classification results were consistent with that obtained by the method of multi-factor comprehensive evaluation. The model can increase the accuracy effectively in determining the level of spontaneous combustion tendency of sulfide ores, so it provides a new method for controlling the spontaneous fire of sulfur-rich mines.

参考文献/References:

[1] 阳富强, 吴超. 硫化矿自燃预测预报理论与技术[M]. 北京:冶金工业出版社, 2011. YANG Fuqiang, WU Chao. Prediction and Forecast of Spontaneous Combustion of Sulfide Minerals:Theory and Technology[M]. Beijing:Metallurgical Industry Press, 2011. (in Chinese)
[2] 谢正文, 吴超, 李孜军, 等. 基于信息熵和集对分析理论的硫化矿石自燃倾向性判定[J]. 中南大学学报(自然科学版), 2012, 43(5):1858-1863. XIE Zhengwen, WU Chao, LI Zijun, et al. Evaluation on spontaneous combustion tendency of sulfide ores based on entropy and set pair analysis theory[J]. Journal of Central South University(Science and Technology), 2012, 43(5):1858-1863. (in Chinese)
[3] A.Hadi zdeniz, S. Kelebek. A study of self-heating characteristics of a pyrrhotite-rich sulphide ore stockpile[J]. Journal of China University of Mining & Technology, 2013, 23(3):381-386.
[4] 曹烨, 熊先孝, 李响, 等. 中国硫矿床特征及资源潜力分析[J]. 现代化工, 2013, 33(12):5-10. CAO Ye, XIONG Xianxiao, LI Xiang, et al. Characteristics and resource potential of sulfur deposits in China[J]. Modern Chemical Industry, 2013, 33(12):5-10. (in Chinese)
[5] 罗凯, 吴超, 阳富强, 等. 矿山硫化矿自燃倾向性分级的Bayes判别法及应用[J]. 中南大学学报(自然科学版), 2014, 45(7):2244-2249. LUO Kai, WU Chao, YANG Fuqiang, et al. Bayes discriminant analysis of spontaneous combustion tendency classification of sulfide minerals in metal mines[J]. Journal of Central South University(Science and Technology) 2014, 45(7):2244-2249. (in Chinese)
[6] Dai Zongfu. Developmentof an experimental methodology for sulphide self-heating studies and the self-heating tendency of vale’s voisey’s bay concentrator products[J]. Minerals Engineering, 2016, 92(6):125-133.
[7] 李孜军, 徐志国, 邓艳星. 氧化增重法测试硫化矿石低温氧化性参数优化[J]. 中国安全科学学报, 2012, 22(6):54-59. LI Zijun, XU Zhiguo, DENG Yanxing. Parameter optimization of oxidation weight Increase method for oxidability detection of sulfide ores at low temperature[J]. China Safety Science Journal, 2012, 22(6):54-59. (in Chinese)
[8] 潘伟, 吴超, 李孜军, 等. 硫化矿石堆自热过程复杂度变化趋势[J]. 中南大学学报(自然科学版), 2015, 46(2):610-616. PAN Wei, WU Chao, LI Zijun, et al. Complexity trend of self-heating process of sulfide oreheap[J]. Journal of Central South University(Science and Technology), 2015, 46(2):610-616. (in Chinese)
[9] 艾纯明, 吴爱祥, 王贻明, 等. 高硫矿石细菌脱硫及其反应动力学分析[J]. 中国有色金属学报, 2015, 25(5):1345-1354. AI Chunming, WU Aixiang, WANG Yiming, et al. Bacterial desulfurization of sulfide ores and its reaction kinetics analysis[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(5):1345-1354. (in Chinese)
[10] 阳富强, 吴超, 李孜军. 硫化矿石自燃倾向性综合判定的物元模型及其应用[J]. 中南大学学报(自然科学版), 2011, 42(11):3459-3464. YANG Fuqiang, WU Chao, LI Zijun. Matter-element model and its application to comprehensive determination on spontaneous combustion tendency of sulfide ores[J]. Journal of Central South University(Science and Technology), 2011, 42(11):3459-3464. (in Chinese)
[11] 刘禹, 李德毅. 正态云模型雾化性质统计分析[J]. 北京航空航天大学报, 2010, 36(11):1320-1324. LIU Yu, LI Deyi. Statistics on atomized feature of normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11):1320-1324. (in Chinese)
[12] 何金平, 高全, 施玉群. 基于云模型的大坝安全多层次综合评价方法[J]. 系统工程理论与实践, 2016, 36(11):2977-2983. HE Jinping, GAO Quan, SHI Yuqun. A muti-hierarchical comprehensive evaluation method of dam safety based on cloud model[J]. Systems Engineering-Theory & Practice, 2016, 36(11):2977-2983. (in Chinese)
[13] 张杨, 严金明, 江平, 等. 基于正态云模型的湖北省土地资源生态安全评价[J]. 农业工程学报, 2013, 29(22):252-258. ZHANG Yang, YAN Jinming, JIANG Ping, et al. Normal cloud model based evaluation of land resources ecological security in Hubei province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(22):252-258. (in Chinese)
[14] 贾彦强, 许开立, 张津嘉, 等. 中小企业生产车间综合安全评价云模型[J]. 中国安全科学学报, 2016, 26(7):113-118. JIA Yanqiang, XU Kaili, ZHANG Jinjia, et al. Comprehensive safety evaluation for production workshop in small and medium-sized enterprise based on cloud model[J]. China Safety Science Journal, 2016, 26(7):113-118. (in Chinese)
[15] 程启月. 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010, 30(7):1225-1228. CHENG Qiyue. Structure entropy weight method to confirm the weight of evaluating index[J].Systems Engineering-Theory & Practice, 2010, 30(7):1225-1228. (in Chinese)
[16] 王迎超, 靖洪文, 张强, 等. 基于正态云模型的深埋地下工程岩爆烈度分级预测研究[J]. 岩土力学, 2015, 36(4):1189-1194. WANG Yingchao, JING Hongwen, ZHANG Qiang, et al. A normal cloud model-based study of grading prediction of rockburst intensity in deep undergroundengineering[J]. Rock and Soil Mechanics, 2015, 36(4):1189-1194. (in Chinese)
[17] 李德仁, 王树良, 李德毅. 空间数据挖掘的理论与应用[M]. 北京:科学出版社, 2013. LI Deren, WANG Shuliang, LI Deyi. Spatial Data Theories and Application[M]. Beijing:Science Press, 2013. (in Chinese)
[18] 杨卓, 戎晓力, 卢浩, 等. 基于熵权物元可拓理论的隧道塌方风险评估[J]. 安全与环境学报, 2016, 16(2):15-19. YANG Zhuo, RONG Xiaoli, LU Hao, et al. Risk assessment on the tunnel collapse probability by the theory ofextenics in combination with the entropy weight and matter-element model[J]. Journal of Safety and Environment, 2016, 16(2):15-19. (in Chinese)
[19] 孙鸿鹄, 程先富, 倪玲, 等. 基于云模型和熵权法的巢湖流域防洪减灾能力评估[J]. 灾害学, 2015, 30(1):222-227. SUN Honghu, CHENG Xianfu, NI Ling, et al. Capacity evaluation of flood disaster prevention and reduction in Chaohu basin based on cloud model and entropy weight method[J]. Journal of Catastrophology, 2015, 30(1):222-227. (in Chinese)
[20] 冯学慧. 基于熵权法与正态云模型的大坝安全综合评价[J]. 水电能源科学, 2015, 33(11):57-60. FENG Xuehui. Evaluation of dam safety based on cloud model and entropy weight method[J]. Water Resources and Power, 2015, 33(11):57-60. (in Chinese)
[21] 阳富强, 陈伯辉. 硫化矿石自燃倾向性评价的属性区间识别模型[J]. 中国安全科学学报, 2012, 22(1):70-75. YANG Fuqiang, CHEN Bohui. Application of attribute interval recognition model to comprehensive assessment of spontaneous combustion tendency of sulfideores[J]. China Safety Science Journal, 2012, 22(1):70-75. (in Chinese)
[22] 李孜军. 硫化矿石自燃机理及其预防关键技术研究[D]. 长沙:中南大学资源与安全工程学院, 2007:1-5. LI Zijun. Key Technique Research on Spontaneous Combustion Mechanism and Prevention of Sulfideores[D]. Changsha:Central South University, School of Resources and Safety Engineering, 2007:1-5. (in Chinese)

相似文献/References:

[1]阳富强,刘广宁,郭乐乐.硫化矿石自燃倾向性等级划分的GA-BP神经网络模型及应用[J].自然灾害学报,2015,(04):227.[doi:10.13577/j.jnd.2015.0428]
 YANG Fuqiang,LIU Guangning,GUO Lele.GA-BP neural network model and its application to spontaneous combustion tendency classification of sulfide ores[J].,2015,(01):227.[doi:10.13577/j.jnd.2015.0428]

备注/Memo

备注/Memo:
收稿日期:2017-03-01;改回日期:2017-04-12。
基金项目:国家自然科学基金(51741402,51304051);福建省自然科学基金(2016J01224);福建省高校杰出青年科研人才培养计划(83016018);福州大学贵重仪器设备开放测试基金(2018T012)
作者简介:阳富强(1982-),男,副教授,博士,主要从事安全科学与工程领域的研究.E-mail:ouyangfq@163.com
更新日期/Last Update: 1900-01-01