[1]孙江玉,刘创,欧阳敏,等.地震灾害下电网性能研究综述——以弹性视角为主[J].自然灾害学报,2018,(02):014-23.[doi:10.13577/j.jnd.2018.0202]
 SUN Jiangyu,LIU Chuang,OUYANG Min,et al.Review of performance studies on electric power grids under seismic hazards——with a focus on resilience perspective[J].,2018,(02):014-23.[doi:10.13577/j.jnd.2018.0202]
点击复制

地震灾害下电网性能研究综述——以弹性视角为主
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年02期
页码:
014-23
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Review of performance studies on electric power grids under seismic hazards——with a focus on resilience perspective
作者:
孙江玉1 刘创2 欧阳敏2 吕大刚3
1. 南方电网超高压输电公司曲靖局, 云南 曲靖 655000;
2. 华中科技大学 自动化学院系统科学与工程系, 湖北 武汉 430074;
3. 哈尔滨工业大学 土木工程学院, 黑龙江 哈尔滨 150090
Author(s):
SUN Jiangyu1 LIU Chuang2 OUYANG Min2 LÜ Dagang3
1. Qujing Bureau, EHV Power Transmission Company, CSG, Qujing 655000, China;
2. Department of Systems Science and Engineering, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China;
3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
关键词:
电网地震灾害元件脆弱性性能评估弹性
Keywords:
electric power gridsseismic hazardscomponent fragilityperformance assessmentresilience
分类号:
TU4;X93
DOI:
10.13577/j.jnd.2018.0202
摘要:
电网是保障现代社会正常运转不可或缺的关键基础设施,我们日常生活所需的许多基本服务都依赖于电网所提供的电力。中国是一个地震多发国家,世界上较为严重的地震有33%都发生在这个仅占全球陆地面积7%的国家。地震能对电网造成广泛破坏,而停电又将影响依赖于电力的基础服务,进一步恶化地震后果。因此,电网在地震灾害下的性能研究受到了学术界以及工业界的普遍重视,大量的研究成果层出不穷。基于地震灾害下电网性能研究的一般框架,对现有文献从如下四个方面进行了综述:地震灾害情形模拟、电网元件脆弱性建模、电网功能变化过程仿真、电网抗震性能评估与改进。需要注意的是,电网性能可以从脆弱性、可靠性、风险等多个视角进行评估,这里着重从弹性视角进行了研究现状分析。最后总结了当前研究中存在的问题以及未来研究的热点方向。
Abstract:
Electric power grids play an important role in the smooth functioning of modern society as many essential services required in our daily life depend on the electricity. Many cities in China are located in the earthquake-prone regions. If an earthquake occurs, it may cause extensive damage to power facilities and lead to a blackout, which will further affect electricity-depended critical services and result in huge economic loss. The seismic performance studies on electric power grids in the literature have been extensively reviewed from four aspects:seismic scenario generation, component fragility modeling, system-level functionality simulation, and seismic performance assessment and enhancement. Note that the performance of electric power grids can be measured from different perspectives, such as vulnerability, reliability and risk, this review has been mainly conducted from the resilience perspective. Finally, existing problems in the literature have been concluded and several directions for future work have been also provided.

参考文献/References:

[1] 宋甜甜, 杨波. 论电网建设对社会的重要性[J]. 科技致富向导, 2012(20):203-203. SONG Tiantian, YANG Bo. Discussion on the importance of power grid construction to society[J]. Guide of Sci-tech Magazine, 2012(20):203-203. (in Chinese)
[2] Albert R, Albert I, Nakarado G L. Structural vulnerability of the north american power grid[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69(2 Pt 2):292-313.
[3] 谢强. 电力系统的地震灾害研究现状与应急响应[J]. 电力建设, 2008, 29(8):1-6. XIE Qiang. Research status and emergency response of power system under earthquake disaster[J]. Power Construction, 2008, 29(8):1-6. (in Chinese)
[4] 方文弟. "5·12"汶川特大地震对四川电力系统的影响及应对措施调查[J]. 四川水力发电, 2009, 28(3):135-141. FANG Wendi. The influence of "5·12" Wenchuan earthquake on sichuan power system and its response measures[J]. Sichuan Hydroelectric Power, 2009, 28(3):135-141. (in Chinese)
[5] 谢强, 李杰. 电力系统自然灾害的现状与对策[J]. 自然灾害学报, 2006, 15(4):126-131. XIE Qiang, LI Jie. Current situation and countermeasures of natural disaster in power system[J]. Journal of Natural Disasters, 2006, 15(4):126-131. (in Chinese)
[6] Toprak S, Koc A C, Taskin F. Seismic vulnerability assessment of Denizli city, Turkey water supply system[C]//13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, August. 2004, 16.
[7] WU Z, CHANG L, SHI S. Reliability analysis of power systems under disaster impacts[R]. Santa Fe Institute CSSS Report, Beijing, China, 2006.
[8] Dueñas-Osorio L, Craig J I, Goodno B J. Seismic response of critical interdependent networks[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(2):285-306.
[9] Poljansek K., Bono F. and Gutierrez E. Seismic risk assessment of interdependent critical infrastructure systems:The case of European gas and Electricity networks[J]. Earthquake Engineering and Structural Dynamics, 2012(41):61-79.
[10] Pires J A, Ang H S, Villaverde R. Seismic reliability of electrical power transmission systems[J]. Nuclear Engineering & Design, 1996, 160(3):427-439.
[11] 柳春光, 李秀菊. 电力供应系统地震功能失效问题研究[J]. 地震工程与工程振动, 2003, 23(2):159-166. LIU Chunguang, LI Xiuju. Study on failure of seismic function in power supply system[J]. Earthquake Engineering and Engineering Dynamics, 2003, 23(2):159-166. (in Chinese)
[12] Shinozuka M, Dong X, Chen T C, et al. Seismic performance of electric transmission network under component failures[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(2):227-244.
[13] 林均岐, 陈永盛, 刘金龙. 电力系统震后网络连通性研究[J]. 地震工程与工程振动, 2011, 31(6):181-185. LIN Jingqi, CHEN Yongsheng, LIU Jinlong. Study on network connectivity of power system after earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2011, 31(6):181-185. (in Chinese)
[14] 贺海磊, 郭剑波, 谢强. 电气设备的地震灾害易损性分析[J]. 电网技术, 2011(4):25-28. HE Hailei, GUO Jianbo, XIE Qiang. Analysis of earthquake disaster vulnerability of electrical equipment[J]. Power System Technology, 2011(4):25-28. (in Chinese)
[15] 文波, 牛荻涛. 大型变电站主厂房地震易损性研究[J]. 土木工程学报, 2013(2):19-23. WEN Bo, NIU Ditao. Study on seismic vulnerability of main substation in large-scale substation[J].Chinese Journal of Civil Engineering, 2013(2):19-23. (in Chinese)
[16] Jayaram N.,Baker J W. Efficient sampling and data reduction techniques for probabilistic seismic risk assessment[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(10):1109-1131.
[17] Jayaram N, Baker J W. Correlation model for spatially distributed ground-motion intensities[J]. Earthquake Engineering & Structural Dynamics, 2010, 38(15):1687-1708.
[18] Crowley H, Bommer J J. Modelling seismic hazard in earthquake loss models with spatially distributed exposure[J]. Bulletin of Earthquake Engineering, 2006, 4(3):249-273.
[19] Vanzi I. Seismic reliability of electric power networks:methodology and application[J]. Structural Safety, 1996, 18(4):311-327.
[20] Adachi T, Ellingwood B R. Comparative assessment of civil infrastructure network performance under probabilistic and scenario earthquakes[J]. Journal of Infrastructure Systems, 2010, 16(1):1-10.
[21] Raschke M, Bilis E, Kröger W. Vulnerability of the Swiss electric power transmission grid against natural hazards[C]//Conference Proceedings ICASP11. 2011:1407-1414.
[22] Cavalieri F, Franchin P, Cortés J A M B, et al. Models for seismic vulnerability analysis of power networks:comparative assessment[J]. Computer-Aided Civil and Infrastructure Engineering, 2014, 29(8):590-607.
[23] Franchin P, Cavalieri F. Probabilistic assessment of civil infrastructure resilience to earthquakes[J]. Computer-Aided Civil and Infrastructure Engineering, 2015, 30(7):583-600.
[24] 胡大柱, 李宏男, 贾连光, 等. 地震作用下输电铁塔非线性动力反应分析[J]. 沈阳建筑大学学报(自然科学版), 2004, 20(2):94-96. HU Dazhu, LI Hongnan, JIA Lianguang, et al. Nonlinear dynamic response analysis of transmission towers under earthquake action[J]. Journal of Shenyang Jianzhu University Natural Science Edition, 2004, 20(2):94-96. (in Chinese)
[25] 方建, 方晓仁, 孟祥通. 大型输电塔地震动力响应三维有限元分析[J]. 钢结构, 2006, 21(1):30-33. FANG Jian, FANG Xiaoren, MENG Xiangtong. Three-dimensional finite element analysis of seismic response of large-scale transmission towers[J]. Steel Construction, 2006, 21(1):30-33. (in Chinese)
[26] 朱碧蕾, 胡文悌, 李春祥. 基于有限元分析高压输电塔结构的地震反应[J]. 地震工程与工程振动, 2006, 26(5):161-166. ZHU Bilei, HU Wenti, LI Chunxiang. Study on seismic response of high voltage transmission tower structures based on finite element analysis[J]. Earthquake Engineering and Engineering Dynamics, 2006, 26(5):161-166. (in Chinese)
[27] 陈俊旗, 王伟, 孙超睿. 地震动多点激励下输电塔线的反应分析[J]. 土木工程学报, 2013(S1):292-297. CHEN Junqi, WANG Wei, SUN Chaorui. Response analysis of transmission line under multi-point excitation[J]. Journal of Civil Engineering, 2013(S1):292-297. (in Chinese)
[28] Federal Emergency Management Agency. Hazards U.S. multi-hazard (HAZUS-MH) Assessment tool[EB/OL].2012. http://www.fema.gov/plan/prevent/hazus/index.shtm
[29] Rosato V, Bologna S, Tiriticco F. Topological properties of high-voltage electrical transmission networks[J]. Electric Power Systems Research, 2007, 77(2):99-105.
[30] Crucitti P, Latora V, Marchiori M. A topological analysis of the Italian electric power grid[J]. Physica A Statistical Mechanics & Its Applications, 2004, 338(1-2):92-97.
[31] Kinney R, Crucitti P, Albert R, et al. Modeling cascading failures in the north American power grid[J]. European Physical Journal B, 2005, 46(1):101-107.
[32] Holmgren A J. Using graph models to analyze the vulnerability of electric power networks[J]. Risk Analysis, 2006, 26(4):955-969.
[33] Hines P, Cotilla-Sanchez E, Blumsack S. Do topological models provide good information about electricity infrastructure vulnerability?[J]. Chaos, 2010, 20(3):033122.
[34] Amaral L A, Scala A, Barthelemy M, et al. Classes of small-world networks[C]//Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(21):11149-11152.
[35] Albert R, Albert I, Nakarado G L. Structural vulnerability of the north American power grid[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69(2):025103.
[36] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 66(2):065102.
[37] Duenas-Osorio L,Vemuru SM. Cascading failures in complex infrastructure systems[J]. Structural Safety, 2009, 31(2):157-167.
[38] Winkler J,Duenas-Osorio L,Stein R, et al. Performance assessment of topologically diverse power systems subjected to hurricane events[J]. Reliability Engineering & System Safety, 2010, 95(4):323-336.
[39] Rios M A, Kirschen D S, Jayaweera D, et al. Value of security:modeling time-dependent phenomena and weather conditions[J]. IEEE Power Engineering Review, 2002, 17(3):543-548.
[40] Dobson I, Carreras B A, Lynch V E, et al. Complex systems analysis of series of blackouts:cascading failure, critical points, and self-organization[J]. Chaos, 2007, 17(2):026103.
[41] Ouyang M, Duenas-Osorio L. Time-dependent resilience assessment and improvement of urban infrastructure systems[J]. Chaos An Interdisciplinary Journal of Nailinear Science, 2012, 22(3):033122.
[42] Dobson I, Carreras B A, Newman D E. A Probabilistic loading-dependent model of cascading failure and possible implications for blackouts[C]//Proceedings of the 36th Annual Hawaii International Conference on IEEE System Sciences, 2003.
[43] Dobson I, Carreras B A, Newman D E. A branching process approximation to cascading load-dependent system failure[C]//Proceedings of the 37th Annual. Hawaii International Conference on System Sciences. IEEE, 2004:10 pp.
[44] Bompard E, Napoli R, Xue F. Analysis of structural vulnerabilities in power transmission grids[J]. International Journal of Critical Infrastructure Protection, 2009, 2(1-2):5-12.
[45] Bompard E, Napoli R, Xue F. Extended topological approach for the assessment of structural vulnerability in transmission networks[J]. Iet Generation Transmission & Distribution, 2010, 4(6):716-724.
[46] Ouyang M. Comparisons of purely topological model, betweenness based model and direct current power flow model to analyze power grid vulnerability[J]. Chaos, 2013, 23(2):023114.
[47] Ouyang M, Zhao L, Pan Z, et al. Comparisons of complex network based models and direct current power flow model to analyze power grid vulnerability under intentional attacks[J]. Physica A Statistical Mechanics & Its Applications, 2014, 403(6):45-53.
[48] Chang S E, Eguchi R T, Seligson H A. Estimation of the economic impact of multiple lifeline disruption:memphis light, gas and water division case study[J]. Viticultura Enología Profesional Extraordinario, 1996, 96-0011(1):34-36.
[49] Nojima N, Ishikawa Y, Okumura T, et al. Empirical estimation of lifeline outage time in seismic disaster[C]//Proceedings of US-Japan Joint Workshop and Third Grantee Meeting, US-Japan Cooperative Research on Urban Earthquake Disaster Mitigation. 2001:516-517.
[50] Liu H, Davidson R A, Apanasovich T. Statistical forecasting of electric power restoration times in hurricanes and ice storms[J]. IEEE Transactions on Power Systems, 2007, 22(4):2270-2279.
[51] Nojima N, Kameda H. Optimal strategy by use of tree structure for post-earthquake restoration of lifeline network systems[C]//Proceedings of the 10th World Conference on Earthquake Engineering, 1992:5541-5546.
[52] Horn W A. Single-machine job sequencing with treelike precedence ordering and linear delay penalties[J]. SIAM Journal on Applied Mathematics, 1972, 23(2):189-202.
[53] Isoyama R, Iwata T, Watanabe T. Optimization of post-earthquake restoration of city gas systems[C]//Proc. of the Trilateral Seminar-Workshop on Lifeline Earthquake Engineering, Taipei, Taiwan, 1985:3-17.
[54] Yamada Y, Iemura H, Noda S. Application of importance analysis to lifeline restoration in seismic damage[J]. PVP-77, Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment (American Society of Mechanical Engineers, New York, 1983), 1983:425-432.
[55] Zhang R H. Lifeline interaction and post-earthquake urban system reconstruction[C]//Proc of 10th WCEE. Rotterdam:AA Balkema Publishers, 1992(5):475-5.
[56] Kozin F, Zhou H. System study of urban response and reconstruction due to earthquake[J]. Journal of Engineering Mechanics, 1990, 116(9):1959-1972.
[57] Cagnan Z, Davidson R A, et al. Post-earthquake restoration planning for los angeles electric power[J]. Earthquake Spectra, 2006, 22(3):589-608.
[58] Cagnan Z, Davidson R A. Discrete event simulation of the post-earthquake restoration process for electric power systems[J]. International Journal of Risk Assessment and Management, 2007, volume 7(8):1138-1156(19).
[59] Çagnan Z, Davidson R, Guikema S. Post-earthquake restoration modeling of electric power systems[C]//Proceedings of the 13th World Conference on Earthquake Engineering, 2004.
[60] Sato T, Ichii K. Optimization of post-earthquake restoration of lifeline networks using genetic algorithms[J]. Doboku Gakkai Ronbunshu, 1996, 1996(537):245-256.
[61] Sugimoto H, Tamura T. Support system for restoration process of disaster-stricken lifeline networks by GA, report of fundamental research on the mitigation of urban disasters caused by near-field earthquakes[J]. Kyoto University, Japan, 2000:610-613.
[62] Guikema S D, Davidson R, Nozick L K, et al. Optimization of crews in post-earthquake electric power restoration[C]//Proceedings of the 8th US national conference on earthquake engineering. San Francisco, California. 2006.
[63] Xu N, Guikema S D, Davidson R A, et al. Optimizing scheduling of post-earthquake electric power restoration tasks[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(2):265-284.
[64] Yan S, Shih Y L. An ant colony system-based hybrid algorithm for an emergency roadway repair time-space network flow problem[J]. Transportmetrica, 2012, 8(5):361-386.
[65] NODA S. Optimum post-earthquake restoration of a telephone system using neural networks[J]. Journal of Natural Disaster Science, 1993, 15(1):91-111.
[66] Van Hentenryck P, Coffrin C, Bent R. Vehicle routing for the last mile of power system restoration[C]//Proceedings of the 17th Power Systems Computation Conference (PSCC’11), Stockholm, Sweden. 2011.
[67] Faturechi R, Miller-Hooks E. Measuring the performance of transportation infrastructure systems in disasters:a comprehensive review[J]. Journal of Infrastructure Systems, 2015, 21(1).
[68] Aven T. On some recent definitions and analysis frameworks for risk, vulnerability, and resilience[J]. Risk Analysis, 2011, 31(4):515-522.
[69] Zio E. Reliability Engineering:old problems and new challenges[J]. Reliability Engieering and System Safety 2009, 94(2):125-141.
[70] Ang H S, Pires J A, Villaverde R. A model for the seismic reliability assessment of electric power transmission systems[J]. Reliability Engineering & System Safety, 1996, 51(1):7-22.
[71] National Infrastructure Advisory Council, Critical infrastructure resilience final report and recommendations[EB/OL]. 2009, http://www.dhs.gov/xlibrary/assets/niac/niac_critical_infrastructure_resilience.pdf, Available access on March 6, 2016.
[72] Australian Government, Australian Government’s Critical Infrastructure Resilience Strategy[EB/OL]. 2010, http://www.tisn.gov.au/Documents/Australian+Government+s+Critical+Infrastructue+Resilience+Strategy.pdf, Available access on March 6, 2016.
[73] Secretary of State for Environment, Food and Rural Affairs by Command of Her Majesty, Climate Resilient Infrastructure:Preparing for a Changing Climate. Presented to the UK Parliament[EB/OL]. 2011, https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69269/climate-resilient-infrastructure-full.pdf, Available access on March 6, 2016.
[74] Bergstrom J., Winsen R.V. and Henriqson E., On the rationale of resilience in the domain of safety:A literature review[J]. Reliability Engineering and System Safety, 2015, 141:131-141.
[75] Righi A.W., Saurin T.A. and Wachs P., A systematic literature review of resilience engineering:Research areas and a research agenda proposal[J]. Reliability Engineering and System Safety, 2015, 141:142-152.
[76] Holling C.S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematic, 1973, 4:1-23.
[77] U.S. Department of Homeland security, national infrastructure protection plan, partnering to enhance protection and resiliency[OL]. 2009. Available at:http://www.dhs.gov/xlibrary/assets/NIPP_Plan.pdf.
[78] Bruneau M, Chang S E, Eguchi R T, et al. A framework to quantitatively assess and enhance the seismic resilience of communities[J]. Earthquake Spectra, 2003, 19(4):733-752.
[79] Haimes Y.Y. On the definition of resilience in systems[J]. Risk Analysis, 2009, 29(4):498-501.
[80] Kahan J.H., Allen A.C. and George J.K. An operational framework for resilience[J]. Journal of Homeland Security and Emergency Management, 2009, 6(1):article 83.
[81] Vugrin E D, Warren D E, Ehlen M A, et al. A framework for assessing the resilience of infrastructure and economic systems[C]//Sustainable and resilient critical infrastructure systems. Springer Berlin Heidelberg, 2010:77-116.
[82] Ouyang M, Dueñas-Osorio L, Min X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, s 36-37(2):23-31.
[83] Chang S, Shinozuka M. Measuring Improvements in the disaster resilience of communities[J]. Earthquake Spectra, 2004, 20(3):739-755.
[84] Zobel C W. Representing perceived tradeoffs in defining disaster resilience[J]. Decision Support Systems, 2011, 50(2):394-403.
[85] Cimellaro G P, Reinhorn A M, Bruneau M. Seismic resilience of a hospital system[J]. Structure and Infrastructure Engineering, 2010, 6(1-2):127-144.
[86] Henry D, Ramirez-Marquez J E. Generic metrics and quantitative approaches for system resilience as a function of time[J]. Reliability Engineering & System Safety, 2012(99):114-122.
[87] Francis R, Bekera B. A metric and frameworks for resilience analysis of engineered and infrastructure systems[J]. Reliability Engineering & System Safety, 2014, 121(1):90-103.
[88] Rose A. Economic resilience to natural and man-made disasters:multidisciplinary origins and contextual dimensions[J]. Environmental Hazards, 2011, 7(4):383-398.
[89] Ayyub B M. Systems resilience for multi-hazard environments:definition, metrics, and valuation for decision making[J]. Risk Analysis, 2014, 34(2):340-355(16).
[90] Janic M. Modeling resilience, friability and cost of an airport affected by the large-scale disruptive event[C]//International NECTAR Conference, 2013.
[91] Pant R, Barker K, Ramirez-Marquez J E, et al. Stochastic measures of resilience and their application to container terminals[J]. Computers & Industrial Engineering, 2014, 70(4):183-194.
[92] 杨少勇, 赵建国. 电力系统地震灾害预防技术综述[J]. 电网技术, 2010(8):57-63. YANG Shaoyong, ZHAO Jianguo. Power system earthquake disaster prevention technology[J]. Power Grid Technology, 2010(8):57-63. (in Chinese)
[93] 于文, 葛学礼, 朱立新. 电力系统震害分析和抗震防灾对策[J]. 工业建筑, 2016, 46(6). YU Wen, GE Xueli, ZHU Lixin. Power system seismic damage analysis and earthquake disaster prevention countermeasures[J]. Industrial Architecture, 2016, 46(6). (in Chinese)
[94] 赵鹏, 何晓洋, 曾辉. 辽宁电网地震灾害风险分析及应对机制[J]. 东北电力技术, 2014, 35(8):137-138. ZHAO Peng, HE Xiaoyang, ZENG Hui. Evaluation and response mechanism of earthquake disaster in Liaoning power grid[J]. Northeast Electric Power Technology, 2014, 35(8):137-138. (in Chinese)
[95] Shinozuka M, Chang S E, Cheng T C, et al. Resilience of integrated power and water systems[J]. Research Progress & Accomplishments, 2004:65-86.
[96] Duenas-Osorio L., Craig J I, Goodno B J. Seismic response of critical interdependent networks[J]. Earthquake Engineering & Structural Dynamics, 2010, 36(36):285-306.
[97] Nuti C, Rasulo A, Vanzi I. Seismic safety evaluation of electric power supply at urban level[J]. Earthquake Engineering & Structural Dynamics, 2007, 36(2):245-263.
[98] Xu N, Guikema S D, Davidson R A, et al. Optimizing scheduling of post-earthquake electric power restoration tasks[J]. Earthquake Engineering & Structural Dynamics, 2010, 36(2):265-284.
[99] Adachi T, Ellingwood B R. Serviceability of earthquake-damaged water systems:Effects of electrical power availability and power backup systems on system vulnerability[J]. Reliability Engineering & System Safety, 2008, 93(1):78-88.
[100] Miller-Hooks E, Zhang X, Faturechi R. Measuring and maximizing resilience of freight transportation networks[J]. Computers & Operations Research, 2012, 39(7):1633-1643.
[101] Ouyang M, Xu M, Zhang C, et al. Mitigating electric power system vulnerability to worst-case spatially localized attacks[J]. Reliability Engineering & System Safety, 2017, 165:144-154.
[102] Ouyang M, Fang Y. A mathematical framework to optimize critical infrastructure resilience against intentional attacks[J]. Computer-Aided Civil & infrastructure Engineering, 2017, 32(11):909-929.
[103] Shoji G, Toyota A. Modeling of restoration process associated with critical infrastructure and its interdependency due to a seismic disaster[C]//Technical Council on Lifeline Earthquake Engineering Conference, 2009:1-12.

相似文献/References:

[1]魏本勇,苏桂武,吴琼,等.农村家庭认知与响应地震灾害的特点及其家庭际差异——以2007年云南宁洱6.4级地震灾区为例[J].自然灾害学报,2012,(04):116.
 WEI Benyong,SU Guiwu,WU Qiong,et al.Features of awareness and response of rural households to earthquake disasters and their differences between inter-household: a case study of disaster area of Ms 6.4 Ning’er, Yunnan, earthquake in 2007[J].,2012,(02):116.
[2]刘晓静,王慧彦,李志伟,等.工业企业大震灾害下直接经济损失评估方法研究——基于财务会计资产项目[J].自然灾害学报,2012,(04):125.
 LIU Xiaojing,WANG Huiyan,LI Zhiwei,et al.Study on estimation of earthquake-disaster direct economic losses for industrial enterprises:based on financial accounting method[J].,2012,(02):125.
[3]郑通彦,郑毅.2011年中国大陆地震灾害损失述评[J].自然灾害学报,2012,(05):088.
 ZHENG Tongyan,ZHENG Yi.Review of earthquake damage losses in mainland China in 2011[J].,2012,(02):088.
[4]徐敬海,杨燕,邓民宪,等.基于GIS的地震灾情速报与快速判定[J].自然灾害学报,2010,(04):141.
 XU Jing-hai,YAN Yang,DENG Min-xian,et al.GIS-based quick report and estimation of earthquake disaster information[J].,2010,(02):141.
[5]卢大伟,刘博.我国建立地震保险制度的探讨[J].自然灾害学报,2010,(05):029.
 LU Da-wei,LIU Bo.Exploration and discussion on establishment of earthquake insurance system in China[J].,2010,(02):029.
[6]郑通彦,赵萍,刘在涛.2010年中国大陆地震灾害损失述评[J].自然灾害学报,2011,(04):107.
 ZHENG Tong-yan,ZHAO Ping,LIU Zai-tao.A review of earthquake disaster loss in Chinese mainland in 2010[J].,2011,(02):107.
[7]聂高众,徐敬海.区域防震土地利用评价与分析研究[J].自然灾害学报,2011,(06):027.
 NIE Gao-zhong,XU Jing-hai.Research on estimation and analysis of land use for regional earthquake prevention[J].,2011,(02):027.
[8]王东明.中国地震灾害损失调查评估培训系统[J].自然灾害学报,2012,(06):031.
 WANG Dongming.China earthquake disaster loss investigation assessment training system[J].,2012,(02):031.
[9]刘晓静,薄涛,郭燕.我国地震综合减灾能力评价指标体系——以唐山市为例[J].自然灾害学报,2012,(06):043.
 LIU Xiaojing,BO Tao,GUO Yan.Index system in evaluating comprehensive earthquake disaster mitigation capacity in China: taking Tangshan City as an example[J].,2012,(02):043.
[10]杨帆,苏木标.铁路桥梁地震灾害损失评估技术[J].自然灾害学报,2013,(03):213.
 YANG Fan,SU Mubiao.Earthquake disaster loss assessment technology for railway bridges[J].,2013,(02):213.

备注/Memo

备注/Memo:
收稿日期:2017-06-09;改回日期:2017-08-23。
基金项目:国家自然科学基金项目(71671074,51208223)
作者简介:孙江玉(1969-),男,高级工程师,主要从事输电线路检修、防雷、防汛、防震研究.E-mail:139874538@qq.com
通讯作者:欧阳敏(1983-),男,副教授,博士,主要从事关联基础设施建模与仿真及弹性研究.E-mail:min.ouyang@hust.edu.cn
更新日期/Last Update: 1900-01-01