[1]谷音,林颖清,黄志杨.考虑水-土-桥梁动力相互作用的大跨桥梁地震反应分析[J].自然灾害学报,2018,(02):084-93.[doi:10.13577/j.jnd.2018.0210]
 GU Yin,LIN Yingqing,HUANG Zhiyang.Seismic response of bridge structures considering hydro dynamic and soil dynamic interaction[J].,2018,(02):084-93.[doi:10.13577/j.jnd.2018.0210]
点击复制

考虑水-土-桥梁动力相互作用的大跨桥梁地震反应分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年02期
页码:
084-93
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Seismic response of bridge structures considering hydro dynamic and soil dynamic interaction
作者:
谷音 林颖清 黄志杨
福州大学 土木工程学院, 福建 福州 350116
Author(s):
GU Yin LIN Yingqing HUANG Zhiyang
College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
关键词:
桥梁结构地震反应动水压力水-土动力相互作用流固耦合粘弹性人工边界单元流体边界
Keywords:
seismic response of bridge structurehydrodynamic pressurefluid-soil dynamic interactionfluid-solid couplingviscoelastic artificial boundary elementfluid boundary
分类号:
U442.5;U448;X93
DOI:
10.13577/j.jnd.2018.0210
摘要:
为了研究地震动作用下动水压力对深水桥梁的影响,基于局部动力人工边界、流体边界及流固耦合理论方法建立了水-土-单桩整体模型,通过水平地震作用下的动力时程反应分析,同简化的Morison方程法模拟方式及无水模型进行对比分析,研究考虑桩土作用前提下工程简化方法和考虑流固耦合的整体方法的差异,以及桩土作用下动水压力对单桩结构动力反应的影响。在此基础上,以某跨海大跨连续刚构桥为背景,首次建立了水-土-桥梁系统的整体动力有限元模型,研究水-土-桥梁系统的地震动力反应,分析了桥梁各构件的内力幅值和分布规律,并与未考虑动水作用下的桥梁结构进行对比,分析了动水压力对深水桥梁的地震反应的影响规律。结果表明,动水作用受地震波频率影响较大,但规律相近,相同外部环境下,由于上部结构和桩土相互作用的不同,动水压力对单桩的影响大于大跨桥梁桩基础的影响。对于大跨桥梁,动水作用对处于水中桩基础的影响较大,水中部分的桩基础内力增幅最大,对水位以上的桥墩影响稍小,考虑动水作用后主梁轴力增加,弯矩减小。
Abstract:
In order to study the effect of hydrodynamic pressure on deep water bridge under seismic action, the model of water-soil-single pile was established based on acoustic element, dynamic local artificial boundary and fluid-solid coupling theory. The dynamic response of structure was analyzed. The simplified method of Morison equation simulation and the anhydrous model were used to analyze the difference between the simplified method and the method considering the fluid-solid coupling under the premise of pile-soil interaction, and the effect of hydraulic pressure on pile-structural dynamic response. On the basis of this, the dynamic finite element model of the water-soil-bridge system is established for the first time with the background of a long-span continuous rigid frame bridge. The seismic dynamic response of the water-soil-bridge system is studied, the influence of hydrodynamic pressure on the seismic response of deep water bridge is analyzed and compared with the anhydrous bridge structure. Influence of hydrodynamic pressure on seismic response of deep water bridge was studied. The results show that the effect of hydrodynamic is affected by the seismic wave frequency, but the rule is similar. Under the same external condition, the influence of hydrodynamic pressure on the single pile is larger than that of the large span bridge pile due to the influence of the superstructure and the interaction of pile and soil. For large span bridges, the effect of hydrodynamic on the pile foundation in water is larger than the effect on piers which are above water. And the internal force of the section at boundary of soil and water increases most. After considering the effect of hydrodynamic, the axial force of beam increases, and the moment of beam decreases.Geohazards risk assessment is the quantitative analysis and evaluation of the possibility of risk regions to suffer geological disasters of different intensities.

参考文献/References:

[1] Yoshihiro Tanaka, Robert T. Hudspeth. Restoring forces on vertical circular cylinders forced by earthquake[J]. Earthquake Engineering and Structural Dynamics, 1988(16):99-119.
[2] Chopra A. K., Goyal A, Simplified earthquake analysis of intake-outlet towers[J]. Journal of Structural Engineering, 1991, 117(3):767-788.
[3] 房营光, 孙钧. 平台-群桩-水流-土体系统的地震反应分析[J]. 土木工程学报, 1998, 31(5):56-64. FANG Yingguang, SUN Jun, Seismic response analysis of platform-pile-water-soil system[J]. China Civil Engineering Journal, 1998, 31(5):56-64. (in Chinese)
[4] 居荣初, 曾心传. 弹性结构与液体的耦联振动理论[M]. 北京:地震出版社, 1983. JU Rongchu, ZENG Xinchuan. Coupled Vibration Theory of Elastic Structure and Liquid[M]. Beijing:Seismological Press, 1983. (in Chinese)
[5] 杜修力, 赵娟, 赵密. 大直径深水圆柱结构动水压力的时域算法[J]. 土木工程学报, 2012, 45(增刊1):316-320. DU Xiuli, ZHAO Juan, ZHAO Mi. A time-domain method for the hydrodynamic pressure on deep-water[J]. China Civil Engineering Journal, 2012, 45(Supp.1):316-320. (in Chinese)
[6] Bathe K J, Zhang H, Ji S H. Finite element analysis of fluid flows fully coupled with structural interaction[J]. Computers & Structures, 1999, 72(1):1-16.
[7] 席仁强, 陈国兴, 王志华. 考虑流固耦合的水中结构物地震反应方法[J]. 世界地震工程, 2009(25):60-67. XI Renqiang, CHEN Guoxing, WANG Zhihua. Seismic response of underwater structure considering fluid-structure interaction[J]. World Earthquake Engineering, 2009(25):60-67. (in Chinese)
[8] Fan S C, Li S M, Yu G Y. Dynamic fluid-structure interaction analysis using boundary finite element method-finite element method[J]. Journal of Applied Mechanics, 2005, 72(4):591-598.
[9] Martinelli L, Barbella G, Feriani A. A numerical procedure for simulating the multi-support seismic response of submerged floating tunnels anchored by cables[J]. Engineering Structures, 2011, 33(10):2850-2860.
[10] 高学奎. 近场地震作用下深水桥墩的特殊地震响应分析[D]. 北京:北京交通大学, 2006. GAO Xuekui. Analysis of special earthquake response of deepwater pier under near-field earthquake[D]. Beijing:Beijing Jiaotong University, 2006. (in Chinese)
[11] 胡杨. 动水压力作用下深水桥墩地震反应分析研究[D]. 湖南:中南大学, 2009. HU Yang. Study on seismic response of pier in deep water under hydrodynamic pressure[D]. Hunan:Central South University, 2009. (in Chinese)
[12] 柳春光, 齐念. 考虑流固耦合作用的深水桥墩地震响应分析[J]. 防灾减灾工程学报, 2009, 29(4):433-437. LIU Chunguang, QI Nian. Seismic response analysis of deep-water bridge piers considering fluid-solid coupling[J]. Journal of Disaster Prevention and Mitigation Engineering, 2009, 29(4):433-437. (in Chinese)
[13] 卢浩. Morison方程法在深水桥梁地震响应分析中的适用范围研究[D]. 北京:北京交通大学, 2012. LU Hao. Study on the application range of morison equation method in seismic response analysis of deep water bridge[D]. Beijing:Beijing Jiaotong University, 2012. (in Chinese)
[14] 赖伟. 地震和波浪作用下深水桥梁的动力响应研究[D]. 上海:同济大学, 2004. LAI Wei. Study on dynamic response of deep-water bridge under earthquake and wave[D]. Shanghai:Tongji University, 2004. (in Chinese)
[15] 黄信. 水-桥墩动力相互作用机理及深水桥梁非线性地震响应研究[D]. 天津:天津大学, 2011. HUANG Xin. Study on dynamic interaction mechanism of water-pier and nonlinear seismic response of deep water bridge[D]. Tianjin:Tianjin University, 2011. (in Chinese)
[16] 刘振宇. 深水桥梁的地震响应研究[D]. 成都:西南交通大学, 2008. LIU Zhenyu. Study on seismic response of deep water bridge[D]. Chengdu:Southwest Jiaotong University, 2008. (in Chinese)
[17] S.H. Jun. Determination of scoured bridge natural frequencies with soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2013(55):247-254.
[18] 蔡袁强, 丁光亚, 徐长节. 饱和土中排桩对入射S波隔离的三维分析[J]. 自然灾害学报, 2008, 17(2):1-7. CAI Yuanqiang, DING Guangya, XU Changjie. Eduction in saturated soil pile three dimensional analysis of the incident S wave segregation[J]. Journal of Natural Disasters, 2008, 17(2):1-7. (in Chinese)
[19] Mohammed Y Fattah, Kais T Shlash, Madhat S M Al-Soud. Pile-clayey soil interaction analysis by boundary element method[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(1):28-43.
[20] 李正农, 周振纲, 朱旭鹏. 桩-土非线性动力相互作用简化模型[J]. 自然灾害学报, 2013, 22(6):252-260. LI Zhengnong, ZHOU Zhengang, ZHU Xupeng. Simplified model of nonlinear dynamic interaction of pile and soil[J]. Journal of Natural Disasters, 2013, 22(6):252-260. (in Chinese)
[21] Francesca Dezi, Sandro Carbonari, Graziano Leoni. A model for the 3D kinematic interaction analysis of pile groups in layered soils[J]. Earthquake Engineering and Structural Dynamics, 2009(49):1281-1305.
[22] 谷音, 刘晶波, 杜义欣. 三维一致粘弹性人工边界及等效粘弹性边界单元[J]. 工程力学, 2007, 24(12):31-37. GU Yin, LIU Jingbo, DU Yixin. 3D consistent viscous-spring artificial boundary and viscous-spring artificial element[J]. Engineering Mechanics, 2007, 24(12):31-37. (in Chinese)
[23] 谷音, 钟华, 卓卫东. 地震作用下大型地铁车站结构三维动力反应分析[J]. 岩石力学与工程学报, 2013,11(2290-2299). GU Yin, ZHONG Hua, ZHUO Weidong. Analysis of dynamic interaction between soil and large subway station structure under seismic excitation based on 3D model[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 11(2290-2299). (in Chinese)
[24] O.C.Zienkiewicz, R.L.Taylor. 有限元方法:流体动力学[M]. 第五版. 北京:清华大学出版社, 2008. O.C.Zienkiewicz, R.L.Taylor. The Finite Element Method:Fluid Dynamics[M]. (5th ed). Beijing:Tsinghua University Press, 2008. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-06-17;改回日期:2017-08-17。
基金项目:国家自然科学基金项目(51108088,51578157)
作者简介:谷音(1976-),女,教授,博士,主要从事结构抗震方面的研究.E-mail:cinoa@fzu.edu.cn
更新日期/Last Update: 1900-01-01