HUANG Qingzhong,ZHANG Qiang,LI Qin,et al.SPEI-based evaluation of seasonal dryness/wetness variations and related causes[J].,2018,(02):130-140.[doi:10.13577/j.jnd.2018.0216]





SPEI-based evaluation of seasonal dryness/wetness variations and related causes
黄庆忠1 张强234 李勤1 史培军234 郑泳杰1 孔冬冬1
1. 中山大学 水资源与环境系, 广东 广州 510275;
2. 北京师范大学环境演变与自然灾害教育部重点实验室, 北京 100875;
3. 北京师范大学地表过程与资源生态国家重点实验室, 北京 100875;
4. 北京师范大学减灾与应急管理研究院, 北京 100875
HUANG Qingzhong1 ZHANG Qiang234 LI Qin1 SHI Peijun234 ZHENG Yongjie1 KONG Dongdong1
1. Department of Water Resources and Environment, SunYat-sen University, Guangzhou 510275, China;
2. Key Laboratory of Environmental Change and Natural Disaster, Ministry of Education, Beijing Normal University, Beijing 100875, China;
3. State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China;
4. Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China
SPEIwetness/dryness variationschanging propertieswater vapor fluxwavelet analysis
利用英国气候研究中心提供的Time-Series(TS)Version 3.23高分辨率气候栅格数据集以及NCEP再分析数据,根据SPEI方法计算得到标准化降水蒸散发指数,研究了1949—2014年中国区域干湿气候变化特征。结果表明:全国大部分地区呈现干旱化趋势,干旱化区域主要集中在100°E以东区域,而新疆西北部、柴达木盆地及青藏高原东北侧在春夏秋冬四季均呈现显著上升的湿润化趋势,春夏季的珠江流域南部地区有一小范围亦呈显著湿润化趋势。水汽通量的分析表明干燥气候地区主要受大陆气团影响,湿润气候地区主要受海洋气团影响,水汽的移动方向与大小可以从时空上解释干湿事件的发生。本文的研究结果可对中国地区农业灌溉与水资源管理提供科学依据。
Wetness/dryness variations across China in both space and time were investigated using the grid climate data of Time-Series (TS) Version 3.23. The SPEI technique was used to evaluate wetness and dryness conditions. The time interval under consideration is during 1949-2014. The results indicated that most regions of China experienced drying tendency and regions dominated by drying tendency are in east to 100°E. Meanwhile, significant wetting tendency was observed in northwest parts of Xinjiang, Qaidam Basin and northeast parts of the Tibet Plateau. Analysis of water vapor flux by air mass propagation indicated that dry regimes are attributed to continental air mass and wet regimes to oceanic air mass. Propagation of water vapor flux can thus explain the occurrence of wetness/dryness events in both space and time. The results of this study are helpful for management of agricultural irrigation and water resources across China.


[1] 李伟光, 侯美亭, 陈汇林, 等. 基于标准化降水蒸散指数的华南干旱趋势研究[J]. 自然灾害学报, 2012, 21(4):84-90. LI Weiguang, HOU Meiting, CHEN Huilin, et al. Study on drought trend in south China based on standardized precipitation evapotranspiration index[J]. Journal of Natural Disasters, 2012, 21(4):84-90. (in Chinese)
[2] 蔡新玲, 李茜, 方建刚. 陕西区域性气象干旱事件及变化特征[J]. 干旱区地理, 2016, 39(2):294-300. CAI Xinling, LI Qian, FANG Jiangang. Variation characteristics of regional meteorological drought events of Shaanxi province[J]. Arid Land Geography, 2016, 39(2):294-300. (in Chinese)
[3] Zhang Q, Xu C, Zhang Z. Observed changes of drought/wetness episodes in the Pearl river basin, China, using the standardized precipitation index and aridity index[J]. Theoretical and Applied Climatology, 2009, 98(1-2):89-99.
[4] Lu H, Wu Y, Li Y, et al. Effects of meteorological droughts on agricultural water resources in southern China[J]. Journal of Hydrology, 2017, 548:419-435.
[5] Hao Z, Aghakouchak A, Nakhjiri N, et al. Global integrated drought monitoring and prediction system[J]. Scientific Data, 2014, 1.
[6] 李剑锋, 张强, 陈晓宏, 等. 基于标准降水指标的新疆干旱特征演变[J]. 应用气象学报, 2012, 23(3):322-330. LI Jianfeng, ZHANG Qiang, CHEN Xiaohong, et al. SPI-based drought variations in Xinjiang, China[J]. Journal of Applied Meteorological Science, 2012, 23(3):322-330. (in Chinese)
[7] 任余龙, 石彦军, 王劲松, 等. 1961-2009年西北地区基于SPI指数的干旱时空变化特征[J]. 冰川冻土, 2013, 35(4):938-948. REN Yulong, SHI Yanjun, WANG Jinsong, et al. Spatial and temporal variation characteristics of drought in northwest China during 1961-2009 with standardized precipitation index[J]. Journal of Glaciology and Geocryology, 2013, 35(4):938-948. (in Chinese)
[8] 刘珂, 姜大膀. 基于两种潜在蒸散发算法的SPEI对中国干湿变化的分析[J]. 大气科学, 2015, 39(1):23-36. LIU Ke, JIANG Dabang. Analysis of dryness/wetness over China using standardized precipitation evapotranspiration index based on two evapotranspiration algorithms[J]. Chinese Journal of Atmospheric Sciences, 2015, 39(1):23-36. (in Chinese)
[9] Guttman N B. Comparing the palmer drought index and the standardized precipitation index[J]. Journal of the American Water Resources Association, 1998, 34(1):113-121.
[10] 杨建玲, 冯建民, 穆建华, 等. 西北地区东部季节干旱的时空变化特征分析[J]. 冰川冻土, 2013, 35(4):949-958. YANG Jianling, FENG Jianmin, MU Jianhua, et al. Analysis of the characteristics of temporal and spatial variation of seasonal drought in the east of northwest China[J]. Journal of Glaciology and Geocryology, 2013, 35(4):949-958. (in Chinese)
[11] 邹旭恺, 任国玉, 张强. 基于综合气象干旱指数的中国干旱变化趋势研究[J]. 气候与环境研究, 2010, 15(4):371-378. ZOU Xukai, REN Guoyu, ZHANG Qiang. Droughts variations in China based on a compound index of meterological drought[J]. Climatic and Environmental Research, 2010, 15(4):371-378. (in Chinese)
[12] Vicente-Serrano S M, Begueria S, Lopez-Moreno J I. A multiscalar drought index sensitive to global warming:the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7):1696-1718.
[13] 栗健, 岳耀杰, 潘红梅, 等. 中国1961-2010年气象干旱的时空规律——基于SPEI和Intensity analysis方法的研究[J]. 灾害学, 2014, 29(4):176-182. LI Jian, YUEYaojie, PAN Hongmei, et al. Variation rules of meteorological drought in China during 1961-2010 based on SPEI and intensity analysis[J]. Journal of Catastrophology, 2014, 29(4):176-182. (in Chinese)
[14] Yu M, Li Q, Hayes M J, et al. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index:1951-2010[J]. International Journal of Climatology, 2014(34):545-558.
[15] Zhang R, Yuan Y, Gou X, et al. Tree-ring-based moisture variability in western tianshan mountains since A.D. 1882 and its possible driving mechanism[J]. Agricultural and Forest Meteorology, 2016, 218-219:267-276.
[16] Vicente-Serrano S M, Beguería S, López-Moreno J I, et al. A New global 0.5° gridded dataset (1901-2006) of a multiscalar drought Index:comparison with current drought Index datasets based on the palmer drought severity index[J]. Journal of Hydrometeorology, 2010, 11(4):1033-1043.
[17] Wu G, Liu X, Chen T, et al. Elevation-dependent variations of tree growth and intrinsic water-use efficiency in schrenk spruce (Picea schrenkiana) in the western Tianshan mountains, China[J]. Frontiers in Plant Science, 2015, 6.
[18] Kra E. FAO-56 Penman-Monteith Daily ETo from linear regression calibrated hargreaves equation with wind terms in tropics with limited data[J]. International Journal of Agronomy, 2014, 2014:1-9.
[19] Ruspini E H. A New Approach to Clustering[J]. Information and Control, 1969, 15:397-401.
[20] Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters[J]. Journal of Cybernetics, 1973, 3(3):32-57.
[21] Bezdek J C. A convergence theorem for the fuzzy ISODATA clustering algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, PAMI-2(1):1-8.
[22] Srinivas V V, Tripathi S, Rao A R, et al. Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering[J]. Journal of Hydrology, 2008, 348(1-2):148-166.
[23] Satyanarayana P, Srinivas V V. Regionalization of precipitation in data sparse areas using large scale atmospheric variables-A fuzzy clustering approach[J]. Journal of Hydrology, 2011, 405(3-4):462-473.
[24] Zhang Q, Xu C, Zhang Z. Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index[J]. Theoretical and Applied Climatology, 2009, 98(1-2):89-99.
[25] Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998, 204(1):182-196.
[26] Mitchell J M, Dzerdzeevskii B, Flohn H. Climate Change[M]. Cambridge:Cambridge University Press, 1966.
[27] 国家基础地理信息中心. 地理实体数据整合技术要求[EB/OL]. (2010-2-1)[2012-12-20] http://files.ngcc.sbsm.gov.cn/www/201206/20120614155333571.pdf National Geomatics Center of China. Technical Requirements for Geographic Entity Data Integration[EB/OL].(2010-2-1)[2012-12-20] http://files.ngcc.sbsm.gov.cn/www/201206/20120614155333571.pdf. (in Chinese)
[28] 李勤, 张强, 黄庆忠, 等. 中国气象农业非参数化综合干旱监测及其适用性[J]. 地理学报, 2018, 73(1):67-80. LI Qin, ZHANG Qiang, HUANG Qingzhong, et al. Nonparametric integrated agro-meteorological drought monitoring in China:New monitoring technique and applicability[J]. Acta Geographica Sinica, 2018, 73(1):67-80. (in Chinese)
[29] 田红, 郭品文, 陆维松. 中国夏季降水的水汽通道特征及其影响因子分析[J]. 热带气象学报, 2004, 20(4):401-408. TIAN Hong, GUO Pinwen, LU Weisong. Charateristics of vapor inflow corridors related to summer rainfall in China and impact factors[J]. Journal of Tropical Meteorology, 2004, 20(4):401-408. (in Chinese)
[30] Chow K C, Tong H, Chan J C L. Water vapor sources associated with the early summer precipitation over China[J]. Climate Dynamics, 2008, 30(5):497-517.


 DU Lingtong,SONG Naiping,WANG Lei,et al.Characteristics of drought variations in Ningxia from 1960 to 2012 under background of climate change[J].,2015,(02):157.[doi:10.13577/j.jnd.2015.0220]
 ZHU Xinyu.The variation in the characteristics of drought in east Henan Province over a 50-year period based on standaradzed precipitation evapotranspiration index[J].,2015,(02):128.[doi:10.13577/j.jnd.2015.0416]
 REN Yi,WANG Yimin,CHANG Jianxia,et al.Drought characteristics analysis of the Yellow River basin based on the index of multi-source information[J].,2017,(02):106.[doi:10.13577/j.jnd.2017.0413]


更新日期/Last Update: 1900-01-01