[1]单慧媚,彭三曦,梁和成,等.多次饱水下水化学作用对库岸土体的微结构效应研究[J].自然灾害学报,2018,(03):039-46.[doi:10.13577/j.jnd.2018.0305]
 SHAN Huimei,PENG Sanxi,LIANG Hecheng,et al.Study on microstructure effect of chemical reactions after multiple soaked processes of slope soil[J].,2018,(03):039-46.[doi:10.13577/j.jnd.2018.0305]
点击复制

多次饱水下水化学作用对库岸土体的微结构效应研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年03期
页码:
039-46
栏目:
出版日期:
2018-06-28

文章信息/Info

Title:
Study on microstructure effect of chemical reactions after multiple soaked processes of slope soil
作者:
单慧媚1 彭三曦23 梁和成3 李义连3
1. 桂林理工大学 环境科学与工程学院, 广西 桂林 541004;
2. 桂林理工大学 地球科学学院, 广西 桂林 541004;
3. 中国地质大学 环境学院, 湖北 武汉 430074
Author(s):
SHAN Huimei1 PENG Sanxi23 LIANG Hecheng3 LI Yilian3
1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China;
2. College of Earth Sciences, Guilin University of Technology, Guilin 541004, China;
3. College of Environment, China University of Geosciences, Wuhan 430074, China
关键词:
多次饱水水化学作用颗粒参数力学强度
Keywords:
multiple soil soaked processeshydrochemical processparticle parametermechanical strength
分类号:
TV11
DOI:
10.13577/j.jnd.2018.0305
摘要:
三峡库区水位涨落导致库岸土体长期处于饱水再失水的反复过程,水动力环境的改变导致其中产生复杂的水化学作用,进一步影响了库岸边坡的稳定性。采集库区库岸土样进行三次饱水再失水试验,测定三次饱水后溶液中离子浓度,观察饱水前后土体的微观结构。通过构建饱水溶液中离子浓度变化与库岸土体的多元回归方程,定量分析水化学作用对其结构参数的影响;通过微结构参数体现的宏观力学特征,进一步分析水化学作用对其工程力学性质的影响。研究发现:(1)库岸土体的颗粒特征主要受到饱水溶液中K+、Mg2+、Pb2+、F-、Ca2+的影响,且K+、Mg2+、Pb2+、F-浓度与颗粒粒径呈负相关,与颗粒分维、颗粒分布分维呈正相关关系,而Ca2+浓度则相反;(2)库岸土体中方解石和白云石矿物的溶解作用,溶液中K+被吸附或与其他离子的置换反应会增强土的抗剪强度、内聚力和渗透性;(3)三次饱水下,库岸土体的力学强度增强。
Abstract:
In the Three Gorges Reservoir area, fluctuation of river water level causes that soil on the reservoir slope were repeatedly soaked by river water and then dehydrated. The change of hydrodynamic environment leads to complex hydrochemical effects, which further affects the stability of the reservoir slope. In this study, soil samples were collected form the Three Gorges Reservoir area and used for three times of soil soaked and dehydrated experiments. The ions concentrations of solutions were measured and soil microstructure was observed. By constructing the multivariate regression equation between ions concentrations of solutions and soil microstructure parameters, the influences of water chemistry on soil structure were quantitatively analyzed. According to macroscopic mechanical characteristics reflected by microstructural parameters, the effect of water chemistry on the mechanical properties were further analyzed. It was found that: (1) The particle characteristics of soil were mainly affected by K+, Mg2+, Pb<sup>2+, F- and Ca2+ of solutions. Their concentrations were negatively correlated with particle size, and positively correlated with particle size distribution and fractal dimension, while Ca2+ concentration was on the contrary; (2) Dissolution of calcite and dolomite minerals in soil samples and K+ adsorption or replacement by other ions will increase the shear strength, cohesion and permeability of the soil; (3) After three times of soil soaked and dehydrated processes, the mechanical strength of slope soil increased.

参考文献/References:

[1] 张江伟, 李小军, 迟明杰, 等. 滑坡灾害的成因机制及其特征分析[J]. 自然灾害学报, 2015, 24(6):42-49. ZHANG Jiangwei, LI Xiaojun, CHI Mingjie, et al. Analysis of formation mechanism and characteristics of landslide disasters[J]. Journal of Natural Disasters, 2015, 24(6):42-49. (in Chinese)
[2] 肖拥军, 邓敏, 杨昌才. 库岸复杂滑坡体形成机制的数值分析[J]. 自然灾害学报, 2015, 24(2):74-80. XIAO Yongjun, DENG Min, YANG Changcai. Numerical analysis of formation mechanism of complex landslide on reservoir bank[J]. Journal of Natural Disasters, 2015, 24(2):74-80. (in Chinese)
[3] 邓宏艳, 孔纪名. 降雨主导型库岸滑坡变形时空分布特征[J]. 自然灾害学报, 2012, 21(1):148-154. DENG Hongyan, KONG Jiming. Spatiotemporal distribution characteristics of reservoir bank landslide deformation driven by rainfall[J]. Journal of Natural Disasters, 2012, 21(2):148-154. (in Chinese)
[4] 孙崇绍, 蔡红卫. 我国历史地震时滑坡崩塌的发育及分布特征[J]. 自然灾害学报, 1997, 6(1):27-32. SUN Chongshao, CAI Hongwei. Developing and distributing characteristics of collapes and landslides during strong[J]. Journal of Natural Disasters, 1997, 6(1):27-32. (in Chinese)
[5] 吴恒, 张信贵, 易念平, 等. 水土作用与土体细观结构研究[J]. 岩石力学与工程学报, 2000, 19(2):199-204. WU Heng, ZHANG Xingui, YI Nianping, et al. Research on water-soil interaction and mesostructure of soilmass[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(2):199-204. (in Chinese)
[6] 吴恒, 代志宏, 张信贵, 等. 水土作用中铝对土体结构性的影响[J]. 岩土力学, 2001, 22(4):474-477. WU Heng, DAI Zhihong, ZHANG Xingui, et al. The influence of aluminium on the soil struntural characteristics in the soil-water interaction[J]. Rcck and Soil Mechanics, 2001, 22(4):474-477. (in Chinese)
[7] 代志宏, 吴恒, 张信贵, 等. 水土作用体系中铁对土体强度的影响机理初探[J]. 河海大学学报(自然科学版), 2003, 31(1):46-49. DAI Zhihong, WU Heng, ZHANG Xingui, et al. Influence of iron element on soil strength in water-soil interaction system[J]. Journal of Hohai University(Natural Sciences), 2003, 31(1):46-49. (in Chinese)
[8] 李守定, 李晓, 张年学, 等. 三峡库区宝塔滑坡泥化夹层泥化过程的水岩作用[J]. 岩土力学, 2006, 27(10):1841-1846. LI Shouding, LI Xiao, ZHANG Nianxue, et al. Water-rock interaction of clay gouged intercalation sludging process of baota landslides in Three Gorges reservoir area[J]. Rcck and Soil Mechanics, 2006, 27(10):1841-1846. (in Chinese)
[9] 周翠英, 邓毅梅, 谭祥韶, 等. 饱水软岩力学性质软化的试验研究与应用[J]. 岩石力学与工程学报, 2005, 24(1):33-38. ZHOU Cuiying, DENG Yimei, TAN Xiangshao, et al. Experimental research on the sofitening of mechanical properties of saturated soft racks and application[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1):33-38. (in Chinese)
[10] 汤连生, 张鹏程, 王思敬. 水-岩化学作用的岩石宏观力学效应的试验研究[J]. 岩石力学与工程学报, 2002, 21(4):526-531. TAN Liansheng, ZHANG Pengcheng, WANG Sijing. Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4):526-531. (in Chinese)
[11] 汤连生. 水-土化学作用的力学效应及机理分析[J]. 中山大学学报(自然科学版), 2000, 39(4):104-109. TAN Liansheng. Mechanical effect of chemical action of water on soil and analysis on its mechanism[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2000, 39(4):104-109. (in Chinese)
[12] 易珍莲, 梁杏, 李福民, 等. ERDAS软件在土体微观结构研究中的应用[J]. 水文地质工程地质, 2007(1):113-115+119. YI Zhenlian, LIANG Xing, LI Fumin, et al. ERDAS apply in quantified analysis of soil[J]. Hydrogeology & Engineering Geology, 2007(1):113-115+119. (in Chinese)
[13] 卫宏, 张玉三, 李太任, 等. 岩石显微空隙粒度分布的分形特征与岩石强度的关系[J]. 岩石力学与工程学报, 2000, 19(3):318-320. WEI Hong, ZHANG Yusan, LI Tairen, et al. Relationgship between fractal features of microcoid grains distrbution and strength of rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(3):318-320. (in Chinese)
[14] 唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析[J]. 岩土工程学报, 2008, 30(4):560-565. TANG Chaosheng, SHI Bin, WANG Baojun. Factors affecting analysis of soil microstructure using SEM[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(4):560-565. (in Chinese)
[15] 裘国荣, 石玉成, 刘红玫, 等. 黄土震陷的微结构损伤模型[J]. 自然灾害学报, 2011, 20(5):210-215. QIU Guorong, SHI Yucheng, LIU Hongmei, et al. Microstructural damage model of seismic subsidence of loess[J]. Journal of Natural Disasters, 2011, 20(5):210-215. (in Chinese)
[16] 胡瑞林, 李向全. 粘性土微结构定量模型及其工程地质特征[M]. 北京:地质出版社, 1995. HU Ruilin, LI Xiangquan. Quantitative Model of Cohesive Soil Microstructure and Its Engineering Geological Characteristics[M]. Beijing:Geological Publishing House, 1995. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-08-12;改回日期:2017-08-19。
基金项目:国家自然科学青年基金项目(41502232,407002059);广西自然科学基金项目(2017GXNSFAA198096);广西中青年教师基础能力提升项目(2018KY0253);广西重点实验室研究基金项目(1701K010)
作者简介:单慧媚(1985-),女,副教授,博士,主要从事地下水污染与防治、滑坡地质灾害、同位素地球化学等研究.E-mail:shanhuimei@glut.edu.cn
通讯作者:彭三曦(1984-),男,讲师,博士研究生,主要从事地质工程及地下水科学与工程方面研究.E-mail:heiyingpsxq@163.com
更新日期/Last Update: 1900-01-01