[1]高超,张正涛,刘青,等.承灾体脆弱性评估指标的最优格网化方法——以淮河干流区暴雨洪涝灾害为例[J].自然灾害学报,2018,(03):119-129.[doi:10.13577/j.jnd.2018.0314]
 GAO Chao,ZHANG Zhengtao,LIU Qing,et al.Study on the optimal grid method in assessment of vulnerability to floods disaster——A case study in the mainstream of Huaihe River Basin[J].,2018,(03):119-129.[doi:10.13577/j.jnd.2018.0314]
点击复制

承灾体脆弱性评估指标的最优格网化方法——以淮河干流区暴雨洪涝灾害为例
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年03期
页码:
119-129
栏目:
出版日期:
2018-06-28

文章信息/Info

Title:
Study on the optimal grid method in assessment of vulnerability to floods disaster——A case study in the mainstream of Huaihe River Basin
作者:
高超1 张正涛2 刘青3 阮甜3
1. 宁波大学 地理与空间信息技术系, 浙江 宁波 315211;
2. 北京师范大学 地理科学学部环境演变与自然灾害教育部重点实验室, 北京 100875;
3. 安徽师范大学 国土资源与旅游学院, 安徽 芜湖 241000
Author(s):
GAO Chao1 ZHANG Zhengtao2 LIU Qing3 RUAN Tian3
1. Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo 315211, China;
2. Key Laboratory of Environmental Evolution and Natural Disaster, Ministry of Education, School of Geography Science, Beijing Normal University, Beijing 100875, China;
3. College of Land Resources and Tourism, Anhui Normal University, Wuhu 241000, China
关键词:
格网化脆弱性评估暴雨洪涝承灾体淮河干流
Keywords:
grid methodvulnerability assessmentrainstorm floodshazard bearing bodymainstream of Huaihe River
分类号:
P426.616;X43
DOI:
10.13577/j.jnd.2018.0314
摘要:
选取淮河干流区基于社会经济数据的9种脆弱性指标,构建了暴雨洪涝灾害承灾体脆弱性评估体系,运用ArcGIS与MatLab软件实现面积权重法、面积占优法、中心点法和长度占优法对各脆弱性评估指标的格网化表达;利用熵值法改进的层次分析法对各指标赋值并进行4种算法下的脆弱性评估。结果表明:(1)面积权重法是单指标格网化过程中的最优算法,格网化结果与源数据间的均方根误差最小。(2)4种算法得到的格网化结果均无面积损失,面积权重法对所得评估结果的极值有一定程度的削弱作用,所得脆弱性评估结果在空间分布上基本与实际灾损情况一致。(3)淮河干流区暴雨洪涝灾害承灾体脆弱性高值区域主要分布在中部,中高值区域主要沿高值区的两侧向东西扩展,低值区主要分布在西南和东北两角。
Abstract:
Nine vulnerability indexes such as social and economic data of the Huaihe River Basin are selected to construct the vulnerability assessment system of the rainstorm floods disaster. This study achieved the area weight method, area dominance method, center point method and length dominance method by ARCGIS and MATLAB to mapping the vulnerability of each vulnerability assessment index, and finally explore the optimal grid expression of each vulnerability assessment index. Furthermore, the analytic hierarchy process improved by entropy method was used to assign each index, and evaluates the vulnerability under the four algorithms. The results are as follows: (1)The area weight method is the optimal algorithm in the process of single index grid, and the root mean square error between the grid result and the source data is the smallest. (2)The results of the four algorithms have no loss of area, and the area weight method has a certain degree of weakening effect on the extreme value of the obtained evaluation results. The results of the vulnerability assessment are basically consistent with the actual disaster situation in the spatial distribution. (3)Huaihe River basin of rainstorm floods vulnerability high value area of hazard bearing bodies are mainly distributed in the central.The high value area mainly spread out on both sides along the high value area expansion. The low value areas are mainly distributed in the southwest and northeast corners.

参考文献/References:

[1] 游温娇, 张永领. 洪灾社会脆弱性指标体系研究[J]. 灾害学, 2013, 28(3):215-220. YOU Wenjiao, ZHANG Yongling. Research on index system of social vulnerability for flood hazard[J]. Journal of Catastrophology, 2013, 28(3):215-220. (in Chinese)
[2] Timmerman P. Vulnerability resilience and the collapse of society. Environmental Monograph[M]. Toronto:Institute for Environmental Studies, 1981.
[3] Schilling J., Freier K.P., Hertig E., et al. Climate change, vulnerability and adaptation in North Africa with focus on Morocco[J]. Agriculture Ecosystems & Environment, 2012, 156(8):12-26.
[4] McCarthy J.J., Canziani O.F., Leary N.A., et al. Climate Change 2001:Impacts, Adaptation and Vulnerability, Third Assessment Report of the IPCC[M]. Cambridge UK:Cambridge University Press, 2001.
[5] Ojima D., Moran E., W Mcconnell., et al. Global Land Project:Science Plan and Implementation Strategy[M]. Environmental Policy Collection, Sweden, 2005.
[6] Downing T. E.Lessons from Famine Early Warning and Food Security for Understanding Adaptation to Climate Change:Toward a Vulnerability/Adaptation Science[M]. Climate Change, Adaptive Capacity and Development, 2003:71-100.
[7] Cutter S. L. The vulnerability of science and the science of vulnerability[J]. Annals of the Association of American Geographers, 2003, 93(1):1-12.
[8] 史培军, 王静爱, 陈婧, 等. 当代地理学之人地相互作用研究的趋向——全球变化人类行为计划(IHDP)第六届开放会议透视[J]. 地理学报, 2006, 61(2):115-126. SHI Peijun, WANG Jingai, CHEN Jing, et al. The future of human-environment interaction researchin geography:Lessons from the 6th open meeting of IHDP[J]. Acta Geographica Sinica, 2006, 61(2):115-126. (in Chinese)
[9] 石勇, 许世远, 石纯, 等. 基于DEA方法的上海农业水灾脆弱性评估[J]. 自然灾害学报, 2011, 20(5):188-192. SHI Yong, XU Shiyuan, SHI Chun, et al. DEA-based assessment of agricultural vulnerability to flood in Shanghai[J]. Journal of Natural Disasters, 2011, 20(5):188-192. (in Chinese)
[10] 黄崇福, 刘新立, 周国贤, 等. 以历史灾情资料为依据的农业自然灾害风险评估方法[J]. 自然灾害学报, 1998, 7(2):1-9. HUANG Chongfu, LIU Xinli, ZHOU Guoxian, et al. Agricultural natural disaster risk assessment method according to the historic disaster data[J]. Journal of Natural Disasters, 1998, 7(2):1-9. (in Chinese)
[11] 尹占娥, 暴丽杰, 殷杰. 基于GIS的上海浦东暴雨内涝灾害脆弱性研究[J]. 自然灾害学报, 2011, 20(2):29-35. YIN Zhane, BAO Lijie, YIN Jie. GIS based study on vulnerability to rainstorm inundation in Pudong of Shanghai[J]. Journal of Natural Disasters, 2011, 20(2):29-35. (in Chinese)
[12] 杨佩国, 靳京, 赵东升, 等. 基于历史暴雨洪涝灾情数据的城市脆弱性定量研究——以北京市为例[J]. 地理科学, 2016, 36(5):733-741. YANG Peiguo, JIN Jing, ZHAO Dongsheng, et al. An urban vulnerability study based on historical flood data:A case study of Beijing[J]. Acta Geographica Sinica, 2016, 36(5):733-741. (in Chinese)
[13] YIN Zhan’e, YIN Jie, XU Shiyuan. Community-based scenario modelling and disaster risk assessment of urban rainstorm water logging[J]. Acta Geographica Sinica, 2011, 21(2):274-284.
[14] 樊运晓, 高朋会, 王红娟. 模糊综合评判区域承灾体脆弱性的理论模型[J]. 灾害学, 2003, 18(3):20-23. FAN Yunxiao, GAO Penghui, WANG Hongjuan. Theoretical model for fuzzy evaluation of vulnerability of regional hazard bearing body[J]. Journal of Catastrophology, 2003, 18(3):20-23. (in Chinese)
[15] 李文博. 江汉平原洪涝灾害脆弱性及农户减灾需求分析[D]. 武汉:华中农业大学, 2012:1-50. LI Wenbo. Analysis of flood disaster vulnerability and peasant households demand for disaster reduction in Jianghan Plain[D]. WuHan:Huazhong Agricultural University, 2012:1-50. (in Chinese)
[16] 汪学兵, 柳林, 吴中福. 空间内插方法在GIS中的应用[J]. 重庆建筑大学学报, 2004, 26(1):35-39. WANG Xuebing, LIU Ling, WU Zhongfu. Application of spatial interpolation in GIS[J].Journal of Chongqing Jianzhu University. 2004, 26(1):35-39. (in Chinese)
[17] 贾艳红. 基于格网GIS的生态安全评价研究[D]. 兰州:西北师范大学, 2005:1-82. JIA Yanhong. A study on ecological security evaluation based on Grid GIS[D]. Lanzhou:Northwest Normal University. 2015:1-82. (in Chinese)
[18] 廖顺宝, 孙九林. 基于GIS的青藏高原人口统计数据空间化[J]. 地理学报, 2003, 58(1):25-33. LIAO Shunbao, SUN Jiulin. GIS based spatialization of population census data in Qinghai-Tibet plateau[J]. Acta Geographica Sinica, 2003, 58(1):25-33. (in Chinese)
[19] 王英安, 岳天祥. 基于格网生成方法的山东省人口密度空间分布模拟[J]. 曲阜师范大学, 2004, 30(3):91-93. WANG Yingan, YUE Tianxiang. A grid generation based method for simulating spatial distribution of population density in Shandong province[J]. Journal of Qufu Normal University, 2004, 30(3):91-93. (in Chinese)
[20] 王根绪, 程国栋. 荒漠绿洲生态系统的景观格局分析——景观空间方法与应用[J]. 干旱区研究, 1999, 16(3):6-11. WANG Genxu, CHENG Guodong. Study on the landscape pattern of a desert-oasis ecological system:A spatial grid method and its application[J]. Arid Zone Research, 1999, 16(3):6-11. (in Chinese)
[21] 张正涛, 高超, 刘青, 等. 不同重现期下淮河流域暴雨洪涝灾害风险评价[J]. 地理研究, 2014, 33(7):1361-1372. ZHANG Zhengtao, GAO Chao, LIU Qing, et al. Risk assessment on storm flood disasters of different return periods in Huaihe river basin[J]. Geographical Research, 2014, 33(7):1361-1372. (in Chinese)
[22] 张斌, 赵前胜, 姜瑜君. 区域承灾体脆弱性指标体系与精细量化模型研究[J]. 灾害学, 2010, 25(2):36-40. ZHANG Bin, ZHAO Qiansheng, JIANG Yujun. Research on indexes system about regional vulnerability of hazard-affected bodies and fine spatial quantitative model[J]. Journal of Catastrophology, 2010, 25(2):36-40. (in Chinese)
[23] 商彦蕊, 史培军. 人为因素在农业旱灾形成过程中所起作用的探讨——以河北省旱灾脆弱性研究为例[J]. 自然灾害学报, 1998, 7(4):35-43. SANG Yanrui, SHI Peijun. Discuss on the role of anthropogenic factors in the forming of agricultural drought disaster process[J]. Journal of Natural Disasters, 1998, 7(4):35-43. (in Chinese)
[24] 戴娟, 潘益农, 刘青, 等. 改进的AHP在县域尺度暴雨洪涝风险评价的应用[J]. 气象科学, 2014, 34(4):428-434. DAI Juan, PAN Yinong, LIU Qing, et al. Application of improved AHP in county-scale rainstorm and flood risk assessment[J]. Journal of the Meteorological Sciences, 2014, 34(4):428-434. (in Chinese)
[25] 董前进, 曹广晶, 王先甲, 等. 洪水资源化多目标决策的风险观控分析[J]. 水力发电学报, 2008, 27(2):6-10. DONG Qianjin, CAO Guangjing, WANG Xianjia, et al. Risk viewing-controlling analysis on multi-objective decision making of flood water utilization[J]. Journal of Hydroelectric Engineering, 2008, 27(2):6-10. (in Chinese)
[26] 廖宝顺, 李泽辉. 四川省人口分布与土地利用的关系及人口数据空间化实验[J]. 长江流域资源与环境, 2004, 13(6):557-561. LIAO Shunbao, LI Zehui. Relationship between population distribution and land use and spatialization of population census data[J]. Resources and Environment in the Yangtze Basin, 2004, 13(6):557-561. (in Chinese)
[27] 李飞, 张树文, 杨久春, 等. 社会经济数据空间化研究进展[J]. 地理与地理信息科学, 2014, 30(4):102-107. LI Fei, ZHANG Shuwen, YANG Jiuchun, et al. A review on research about spatialization of socioeconomic data[J]. Geography and Geo-Information Science, 2014, 30(4):102-107. (in Chinese)
[28] 高超, 金高洁. SWIM水文模型的DEM尺度效应[J]. 地理研究, 2012, 31(3):399-408. GAO Chao, JIN Gaojie. Effects of DEM resolution on results of the SWIM hydrological model in the Changtaiguan basin[J]. Geographical Research, 2012, 31(3):399-408. (in Chinese)
[29] 丁志雄, 李纪人, 李琳. 基于GIS格网模型的洪水淹没分析方法[J]. 水利学报, 2004, 35(6):56-67. DING ZhiXiong, LI Jiren, LI Lin. Method for flood submergence analysis based on GIS grid model[J]. Journal of Hydraulic Engineering, 2004, 35(6):56-67. (in Chinese)
[30] 朱良峰, 吴信才, 刘修国. GIS中矢量多边形网格化问题研究[J]. 地理与地理信息科学, 2004, 20(1):12-15. ZHU Liangfeng, WU Xincai, LIU Xiuguo. Study on the gridding of vector polygon in GIS[J]. Geography and Geo-Information Science, 2004, 20(1):12-15. (in Chinese)
[31] 苏筠, 李莲华, 吴之正, 等. 农业旱灾形成过程中的承灾体脆弱性分析——以湖南鼎城为例[J]. 自然灾害学报, 2005, 14(6):83-87. SU Yun, LI Lianhua, WU Zhizheng, et al. Analysis of hazard-affected body’s vulnerability in formative process of agricultural drought:a case study on Dingcheng district in Hunan[J]. Journal of Natural Disasters, 2005, 14(6):83-87. (in Chinese)

相似文献/References:

[1]石勇,许世远,石纯,等.自然灾害脆弱性研究进展[J].自然灾害学报,2011,(02):131.
 SHI Yong,XU Shi-yuan,SHI Chun,et al.Progress in research on vulnerability of natural disasters[J].,2011,(03):131.
[2]孙洋,卢毅,熊先明,等.四川省21市州城市自然灾害脆弱性评估研究[J].自然灾害学报,2017,(04):116.[doi:10.13577/j.jnd.2017.0414]
 SUN Yang,LU Yi,XIONG Xianming,et al.Study of urban natural disaster vulnerability assessment on the 21 cities of Sichuan province[J].,2017,(03):116.[doi:10.13577/j.jnd.2017.0414]

备注/Memo

备注/Memo:
收稿日期:2017-09-28;改回日期:2017-10-12。
基金项目:国家自然科学基金项目(41571018)
作者简介:高超(1978-),男,教授,博士,主要从事气候变化与水文水资源研究.E-mail:gaoqinchao1@163.com
更新日期/Last Update: 1900-01-01