[1]汤剑雄,徐礼来,李彦旻,等.基于无人机遥感的台风对城市树木生态系统服务的损失评估[J].自然灾害学报,2018,(03):153-161.[doi:10.13577/j.jnd.2018.0318]
 TANG Jianxiong,XU Lilai,LI Yanmin,et al.Assessing the damage caused by typhoon on urban green space ecosystem service based on UAV remote sensing[J].,2018,(03):153-161.[doi:10.13577/j.jnd.2018.0318]
点击复制

基于无人机遥感的台风对城市树木生态系统服务的损失评估
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年03期
页码:
153-161
栏目:
出版日期:
2018-06-28

文章信息/Info

Title:
Assessing the damage caused by typhoon on urban green space ecosystem service based on UAV remote sensing
作者:
汤剑雄123 徐礼来12 李彦旻123 何原荣4 崔胜辉12
1. 中国科学院城市环境研究所城市环境与健康重点实验室, 福建 厦门 361021;
2. 中国科学院大学 资源与环境学院, 北京 100049;
3. 厦门市城市代谢重点实验室, 福建 厦门 361021;
4. 厦门理工学院 计算机与信息工程学院, 福建 厦门 361024
Author(s):
TANG Jianxiong123 XU Lilai12 LI Yanmin123 HE Yuanrong4 CUI Shenghui12
1. Key Laboratory of Urban Environment and Health,Institute of Urban Environment,Chinese Academy of Sciences, Xiamen 36102,China;
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China;
3. Key Laboratory of Urban Metabolism, Xiamen 361021, China;
4. College of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361024,China
关键词:
AForge.NET无人机遥感台风城市绿地生态系统服务
Keywords:
AForge.NETUAV remote sensingtyphoonurban green spaceecosystem service
分类号:
P429;X43
DOI:
10.13577/j.jnd.2018.0318
摘要:
台风的频率和强度呈现逐年增加的趋势,已经并将持续对沿海城市绿地生态系统造成十分严重的影响。识别台风对沿海城市绿地系统的影响范围并定量评估其生态服务的价值损失,对城市绿地系统的灾后重建和适应能力提升具有重要意义。以厦门市集美街道为研究区,利用无人机航拍影像,基于Visual Studio 2010平台和AForge.NET开源框架构建了评估系统,对超强台风"莫兰蒂"造成的树木倒伏数量及其固碳释氧的生态服务价值损失开展了定量评估。结果表明,所构建的方法具备良好的适用性,共检测出倒伏树1 510棵,其生态服务价值损失约为1 890万元。其中行道树221棵,损失约199万元;学校树木760棵,损失约479万元;公园树木146棵,损失约135万元;居民小区树木383棵,损失约1 082万元。倒伏树主要集中于沿海区域,居民小区的数量较少,但其生态服务的价值损失最大,结果可为地方政府灾后恢复及城市规划提供决策支持。
Abstract:
The intensity and frequency of typhoon has showed an increasing trend in recent years, it has caused serious impact on urban green space ecosystem. Recognizing the influenced region in urban green space and quantifying the ecosystem service value loss is of great significance for the reconstruction of urban green space and improving the adaption capacity to typhoon disaster. This study constructs the evaluation system based on the high-resolution aerial image combining with Visual Studio 2010 platform and AForge.NET open source framework. To detect the downed trees and estimate the urban green space ecosystem value loss by super typhoon "Meranti", a case study in Jimei district of Xiamen was conducted by employing the method. The results show that the method has good applicability, 1510 downed trees were detected and the total loss value of ecosystem of the downed trees were about 18.9 million. Among these downed trees, 221 of them were planted along the roads, and their loss value of ecosystem were about 1.99 million; 760 of them were planted in campus, their loss value of ecosystem were about 4.79 million; 146 of them were planted in parks, their loss value of ecosystem were about 1.35 million; 383 of them were planted in building area, their loss value of ecosystem were about 10.82 million. The results showed that although the downed trees mainly centered in coastal area while little number in residential area, the ecosystem service value loss in residential area is the greatest. Meanwhile, the results can provide decision support for local government in disaster recoverying and urban planning.

参考文献/References:

[1] Li K, Li G S. Risk assessment on storm surges in the coastal area of Guangdong Province[J]. Natural Hazards, 2013, 68(2):1129-1139.
[2] Mei W, Xie S P. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10):753-757.
[3] 国家海洋局. 2016中国海洋灾害公报[R]. 北京:国家海洋局, 2017. State Oceanic Administration People’s Republic of China. Bulletin of Marine Disaster of China for the Year of 2010[R]. Beijing:State Oceanic Administration People’s Republic of China, 2011. (in Chinese)
[4] 方雅琴. 从"11.5万棵树木的倒伏"反思"植树造林"[J]. 中学地理教学参考, 2013(Z1):134-135. FANG Yaqin. Reflecting afforestation from "lodging of 115,000 trees"[J]. Teaching Reference of Middle School Geography, 2013(Z1):134-135. (in Chinese)
[5] 台海网. 厦门市政府第三次发布会:台风"莫兰蒂"造成厦门直接经济损失102亿!灾后恢复再现厦门速度![EB/OL]. (2016-09-19)[2017-11-27]. http://www.taihainet.com/news/xmnews/szjj/2016-09-19/1789079.html Taihainet. Xiamen Municipal Government’s third conference:Typhoon Meranti causes Xiamen direct economic losses of 10.2 billion[EB/OL]. (2016-09-19)[2017-11-27]. http://www.taihainet.com/news/xmnews/szjj/2016-09-19/1789079.html (in Chinese)
[6] 李煜莹. 浅谈我国城市大气污染及其生态防治对策[J]. 科技创新导报, 2008(15):111-111. LI Yiying. Briefly discussing about the urban air pollution in our country and the countermeasure of ecological prevention[J]. Science and Technology Innovation Herald, 2008(15):111-111. (in Chinese)
[7] 丁燕, 史培军. 台风灾害的模糊风险评估模型[J]. 自然灾害学报, 2002, 11(1):34-43. DING Yan, SHI Peijun. Fuzzy risk assessment model of typhoon hazard[J]. Journal of Natural Disasters, 2002, 11(1):34-43. (in Chinese)
[8] 殷洁, 戴尔阜, 吴绍洪. 中国台风灾害综合风险评估与区划[J]. 地理科学, 2013, 33(11):1370-1376. YIN Jie, DAI Erfu, WU Shaohong. Integrated risk assessment and Zoning of Typhoon Disasters in China[J]. Scientia Geographica Sinica, 2013, 33(11):1370-1376. (in Chinese)
[9] 巩在武, 胡丽. 台风灾害评估中的影响因子分析[J]. 自然灾害学报, 2015, 24(1):203-213. GONG Zaiwu, HU Li. Influence factor analysis of typhoon disaster assessment[J]. Journal of Natural Disasters, 2015, 24(1):203-213. (in Chinese)
[10] Yin J, Yin Z, Xu S. Composite risk assessment of typhoon-induced disaster for China’s coastal area[J]. Natural Hazards, 2013, 69(3):1423-1434.
[11] 张丽佳, 刘敏, 权瑞松, 等. 中国东南沿海地区热带气旋特点与灾情评估[J]. 华东师范大学学报(自然科学版), 2009(2):41-49. ZHANG Lijia, LIU Min, QUAN Ruisong, et al. Characteristics and disaster evaluation of the tropical cyclones in southeast coastal areas of China[J]. Journal of East China Normal University (Natural Science), 2009(2):41-49. (in Chinese)
[12] 马华铃. 沿海地区台风灾害经济损失评估[D]. 广东外语外贸大学, 2016. MA Hualin. Assessments on Tphoon Dsasters’ Eonomic Lsses in Castal Aeas[D]. Guangdong University of Foreign Studies, 2016. (in Chinese)
[13] 牛海燕, 刘敏, 陆敏, 等. 中国沿海地区台风灾害损失评估研究[J]. 灾害学, 2011, 26(3):61-64. NIU Haiyan, LIU Min, LU Min, et al. Losses assessment of Typhoon disaster in China coastal areas[J]. Journal of Catastrophology, 2011, 26(3):61-64. (in Chinese)
[14] Lee M F, Lin T C, Vadeboncoeur M A, et al. Remote sensing assessment of forest damage in relation to the 1996 strong typhoon Herb at Lienhuachi Experimental Forest, Taiwan[J]. Forest ecology and management, 2008, 255(8-9):3297-3306.
[15] Hayashi M, Saigusa N, Oguma H, et al. Quantitative assessment of the impact of typhoon disturbance on a Japanese forest using satellite laser altimetry[J]. Remote Sensing of Environment, 2015, 156:216-225.
[16] Wang W, Qu J J, Hao X, et al. Post-hurricane forest damage assessment using satellite remote sensing[J]. Agricultural and Forest Meteorology, 2010, 150(1):122-132.
[17] Van der Sande C J, De Jong S M, De RooA P J. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment[J]. International Journal of applied earth observation and geoinformation, 2003, 4(3):217-229.
[18] Hoque M A A, Phinn S, Roelfsema C, et al. Tropical cyclone disaster management using remote sensing and spatial analysis:a review[J]. International Journal of Disaster Risk Reduction, 2017, 22:345-354.
[19] Wang F, Xu Y J. Comparison of remote sensing change detection techniques for assessing hurricane damage to forests[J]. Environmental monitoring and assessment, 2010, 162(1-4):311-326.
[20] Wu Q, Su H, Sherman D J, et al. A graph-based approach for assessing storm-induced coastal changes[J]. International Journal of Remote Sensing, 2016, 37(20):4854-4873.
[21] Zhang K, Whitman D, Leatherman S, et al. Quantification of beach changes caused by Hurricane Floyd along Florida’s Atlantic coast using airborne laser surveys[J]. Journal of Coastal Research, 2005:123-134.
[22] Ezequiel C A F, Cua M, Libatique N C, et al. UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure development[C]//Unmanned Aircraft Systems (ICUAS), 2014 International Conference on. IEEE, 2014:274-283.
[23] 孙玉超, 曾纪胜, 杨帆, 等. 无人机遥感系统在风暴潮灾害损失评估中的应用初探[J]. 海洋开发与管理, 2017, 34(4):56-60. SUN Yuchao, ZENG Jisheng, YANG Fan, et al. Preliminary application of UAV remote sensing system in storm surge disaster loss assessment[J]. Ocean Development and Management, 2017, 34(4):56-60. (in Chinese)
[24] Ma L, Cheng L, Li M, et al. Training set size, scale, and features in geographic object-based image analysis of very high resolution unmanned aerial vehicle imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 102:14-27.
[25] Costanza R, d’Arge R, De Groot R, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(6630):253.
[26] 欧阳志云, 王如松, 赵景柱. 生态系统服务功能及其生态经济价值评价[J]. 应用生态学报, 1999, 10(5):635-640. OUY Zhiyun, WANG Rusong, ZHAO Jingzhu. Ecosystem services and their economic valuation[J]. Chinese Journal Of Applied Ecology, 1999, 10(5):635-640. (in Chinese)
[27] 谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法[J]. 自然资源学报, 2008(5):911-919. XIE Gaodi, ZHEN LIN, LU Chunxia, et al. Expert knowledge based valuation method of ecosystem services in China[J]. Journal of Natural Resources, 2008(5):911-919. (in Chinese)
[28] 厦门市集美区地方志办公室. 集美年鉴[M]. 北京:中华书局, 2015. Jimei District, Xiamen Local Records Office. Jimei Yearbook[M]. Beijing:Zhonghua Book Company, 2015. (in Chinese)
[29] 国家发展和改革委员会应对气候变化司. 中国温室气体清单研究[M]. 中国环境出版社, 2005. National Development and Reform Commission Secretary for Responding to Climate Change. The People’s Republic of China national greenhouse gas inventory[M]. Beijing:China Environmental Science Press, 2005. (in Chinese)
[30] Kirillov A. AForge.NET framework[EB/OL]. (2010-03-02)[2017-11-21]. http://www.aforgenet.com, 2013.
[31] Szantoi Z, Malone S, Escobedo F, et al. A tool for rapid post-hurricane urban tree debris estimates using high resolution aerial imagery[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18:548-556.
[32] 谭艳, 王宇俊, 李飞龙, 等. 几种典型的图像边缘检测算法的分析比较[J]. 电脑知识与技术, 2012, 8(7):1604-1608. TANG Yan, WANG Yujun, LI Feilong, et al. Analysis and comparison for several of typical image edge detection algorithms[J]. Computer Knowledge and Technology, 2012, 8(7):1604-1608. (in Chinese)
[33] 李娅娅, 李志洁, 郑海旭, 等. 图像边缘检测算法的比较与实现[J]. 计算机工程与设计, 2010, 31(9):1971-1975. LI Yaya, LI Zhijie, ZHEN Haixu, et al. Comparison and implementation of image edge detection algorithm[J]. Computer Engineering and Design, 2010, 31(9):1971-1975. (in Chinese)
[34] 周心明, 兰赛, 徐燕. 图像处理中几种边缘检测算法的比较[J]. 现代电力, 2000, 17(3):65-69. ZHOU Xinming, LAN Sai, XU Yan. Comparison of the edge detection algorithms in image processing[J]. Modern Electric Power, 2000, 17(3):65-69. (in Chinese)
[35] 邹福辉, 李忠科. 图像边缘检测算法的对比分析[J]. 计算机应用, 2008, 28(B06):215-216. ZHOU Fuhui, LI Zhongke. Performance comparison of image edge detection algorithms[J]. Journal of Computer Applications, 2008, 28(B06):215-216. (in Chinese)
[36] Nowak D J, Green eld E J, Walton J T. State Urban and Community Forests[M]. Department of Agriculture, Forest Service, Northern Research Station, 2008.
[37] Nowak D J, Crane D E, Stevens J C, et al. Brooklyn’s urban forest[J]. Gen. Tech. Rep. NE-290. Newtown Square, PA:US Department of Agriculture, Forest Service, Northeastern Research Station, 2002:194-199.
[38] 徐俏, 何孟常, 杨志峰, 等. 广州市生态系统服务功能价值评估[J]. 北京师范大学学报(自然科学版), 2003, 39(2):268-272. XU Qiao, HE Mengchang, YU Zhifeng, et al. Assessment on urban ecosystem services of Guangzhou city[J]. Journal-Beijing Normal University Natural Science Edition, 2003, 39(2):268-272. (in Chinese)
[39] 胡健波, 张健. 无人机遥感在生态学中的应用进展[J]. 生态学报, 2018, 38(1):20-30. HU Jianbo, ZHANG Jian. Unmanned aerial vehicle remote sensing in ecology:Advances and prospects[J]. Acta Ecologica Sinica, 2018, 38(1):20-30. (in Chinese)
[40] 徐芳, 黄昌狄. 基于Worldview影像的植被自动提取研究[J]. 测绘地理信息, 2016, 41(1):47-50. XU Fang, HUANG Changdi. Automatic extraction of vegetation based on worldview images[J]. Journal of Geomatics, 2016, 41(1):47-50. (in Chinese)
[41] 周炎涛. Windows中的多线程编程技术和实现[J]. 计算技术与自动化, 2002, 21(3):109-116. ZHOU Yantao. Multithread Techniques and Their Implementation in windows[J]. Computing Technology and Automation, 2002, 21(3):109-116. (in Chinese)
[42] 彭勇波, 艾晓秋, 承颖瑶. 风致树木倒伏研究进展[J]. 自然灾害学报, 2016, 25(5):167-175. PENG Yongbo, Ai Xiaoqiu, Cheng Yingyao. Advances in research on wind-induced trees lodging[J]. Journal of Natural Disasters, 2016, 25(5):167-175. (in Chinese)
[43] Baker C J. The development of a theoretical model for the windthrow of plants[J]. Journal of Theoretical Biology, 1995, 175(3):355-372.
[44] 黄东兵, 吴德. 台风对深圳市行道树的影响及其应对措施探析[J]. 南方农业, 2016, 10(15):77-79. HUANG Dongbing, WU De. The impact of Typhoon on Shenzhen street trees and its countermeasures[J]. South China Agriculture, 2016, 10(15):77-79. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2017-11-29;改回日期:2017-12-05。
基金项目:国家重点研发计划资助(2017YFC0506603);国家自然科学基金项目(41371205);中国科学院国际合作局对外合作重点项目(132C35KYSB20150005);福建省测绘地理信息局科技专项(2018JX02)
作者简介:汤剑雄(1989-),男,博士研究生,主要从事城市自然灾害风险评价与管理方面研究.E-mail:jxtang@iue.ac.cn
通讯作者:崔胜辉(1973-),男,研究员,博士,主要从事城市生态过程与调控方面研究.E-mail:shcui@iue.ac.cn
更新日期/Last Update: 1900-01-01