[1]魏纲,俞国骅,杨波.新建隧道上穿既有隧道引起的剪切错台变形研究[J].自然灾害学报,2018,(04):050-58.[doi:10.13577/j.jnd.2018.0407]
 WEI Gang,YU Guohua,YANG Bo.Study on shearing dislocation platform deformation of existing tunnel due to construction of above-crossing new tunnel[J].,2018,(04):050-58.[doi:10.13577/j.jnd.2018.0407]
点击复制

新建隧道上穿既有隧道引起的剪切错台变形研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年04期
页码:
050-58
栏目:
出版日期:
2018-09-28

文章信息/Info

Title:
Study on shearing dislocation platform deformation of existing tunnel due to construction of above-crossing new tunnel
作者:
魏纲1 俞国骅2 杨波1
1. 浙江大学城市学院 土木工程系, 浙江 杭州 310015;
2. 安徽理工大学 土木建筑学院, 安徽 淮南 232001
Author(s):
WEI Gang1 YU Guohua2 YANG Bo1
1. Department of Civil Engineering, Zhejiang University City College, Hangzhou 310015, China;
2. Department of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China
关键词:
新建盾构隧道既有隧道剪切错台模型上穿隧道纵向位移
Keywords:
new shield tunnelexisting shield tunnelshear staggered modelabove-crossinglongitudinal displacement of tunnel
分类号:
X9;TU43;U45
DOI:
10.13577/j.jnd.2018.0407
摘要:
采用剪切错台模型,研究新建盾构隧道上穿对下方既有地铁盾构隧道的影响。考虑新建隧道上穿时刀盘附加推力、盾壳摩擦力、注浆附加压力以及土体损失在既有隧道轴线处产生的附加应力,将既有盾构隧道简化为由剪切弹簧连接的弹性地基短梁,运用最小势能原理并采用合理的位移试函数,建立计算方程来求解既有隧道的竖向位移值、盾构环之间的错台量以及环间剪切力值,同时对相关参数采用控制变量的方式研究其对既有隧道的影响。研究结果表明:本文方法计算得到的既有盾构隧道竖向隆起值与实测值较为吻合;既有盾构隧道竖向位移最大值处的隧道错台量接近0,在竖向位移曲线的反弯点处隧道错台量和环间剪切力值最大;随着新建隧道的掘进,既有隧道的竖向位移、错台量和环间剪力值不断增大,最后趋于稳定;两隧道的轴线交角越小,既有隧道的竖向位移值就越大;两隧道的净距减小时,既有隧道的隆起变形会更加明显。
Abstract:
Shear staggered model was used to study the influence of the newly built shield tunnel on the underneath existing subway shield tunnel. Considering additional thrust of cutterhead, shield friction, additional pressure caused by grouting and additional stress caused by the loss of soil at the existing tunnel axis when the new tunnel is worn above. The existing shield tunnels are simplified as short beams of elastic foundation connected by shear springs. By using the principle of minimum potential energy and reasonable displacement trial function, a calculation equation is established to solve the vertical displacement of existing tunnels and the amount of the dislocation and shear force values between each ring. The relevant parameters are controlled variables to study its impact on the existing tunnel. The results show the following points. First the vertical humping of the existing shield tunnel calculated by this method is in good agreement with the measured data. Second the dislocation at the maximum of the vertical displacement of the existing shield tunnel is close to zero. Third in the vertical displacement curve of the inflection point, the dislocation of the tunnel and the shear force values between each ring are up to maximum value. Fourth, with the tunneling of the new tunnels, the vertical displacements, the dislocation and shear force values between each ring of the existing tunnels will increase continuously and finally stabilize. Fifth the smaller the axis crossing angle of the two tunnels, the greater the vertical humping of the existing tunnel. When the clearance between the new tunnel and the existing tunnel decreases, the deformation of the existing tunnel will be bigger.

参考文献/References:

[1] 梁荣柱, 夏唐代, 胡军华, 等. 新建隧道近距离上穿对既有地铁隧道纵向变形影响分析[J]. 岩土力学, 2016, 37(增刊1):391-399. LIANG Rongzhu, XIA Tangdai, HU Junhua, et al. Analysis of longitudinal displacement of existing metro tunnel due to construction of above-crossing new tunnel in close distance[J]. Rock and Soil Mechanics, 2016, 37(Supp.1):391-399. (in Chinese)
[2] 许有俊, 陶连金, 文中坤, 等. 新建地铁隧道上穿既有隧道引起的结构隆起变形[J]. 中国铁道科学, 2014, 35(6):48-54. XU Youjun, TAO Lianjin, WEN Zhongkun, et al. Upheaval deformation induced by newly-built metro tunnel up-crossing existing tunnel[J]. China Railway Science, 2014, 35(6):48-54. (in Chinese)
[3] 许有俊, 魏云杰, 姜峰, 等. 地铁上穿工程中既有隧道卸荷附加应力系数[J]. 地下空间与工程学报, 2016, 12(2):321-329. XU Youjun, WEI Yunjie, JIANG Feng, et al. A study on the unloading additional stress coefficient acting on the existing tunnel in the subway overpass project[J]. China Journal of Underground Space and Engineering, 2016, 12(2):321-329. (in Chinese)
[4] LIANG Rongzhu, XIA Tangdai, HONG Yi. Effects of above-crossing tunneling on the existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2016, (58):159-176.
[5] 李凯梁. 新建隧道上穿工程对既有地铁隧道纵向隆起变形影响研究[D]. 黑龙江:哈尔滨工业大学, 2017. LI Kailiang. Study on effects of longitudinal heave deformation of existing metro tunnel due to construction of up-crossing new tunnel[D]. Heilongjiang:Harbin Institute of Technology, 2017. (in Chinese)
[6] 陈亮, 黄宏伟, 王如路. 近距离上部穿越对原有隧道沉降的影响分析[J]. 土木工程学报, 2006, 39(6):83-87. CHEN Liang, HUANG Hongwei, WANG Rulu. Analysis of the observed longitudinal settlement of a tunnel caused by an adjacent shield tunneling on top[J]. China Civil Engineering Journal, 2006, 39(6):83-87. (in Chinese)
[7] 丁传松, 杨兴富. 盾构近距离上穿越对已运营隧道的影响分析[J]. 施工技术, 2009, 38(1):48-50. DING Chuansong, YANG Xingfu. Influence analysis on shield tunnel up-crossing nearby built tunnel[J]. Construction Technology, 2009, 38(1):48-50. (in Chinese)
[8] 贺美德, 刘军, 乐贵平, 等. 大断面通道近距离上穿盾构隧道引起的变形分析[J]. 岩石力学与工程学报, 2014, 33(增2):3682-3691. HE Meide, LIU Jun, LE Guiping, et al. Deformation analysis for shield tunnel upper crossing by close range large section passageway[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Supp.2):3682-3691. (in Chinese)
[9] 徐前卫, 尤春安, 李大勇. 盾构近距离穿越已建隧道的施工影响分析[J]. 岩土力学, 2004, 25(增刊):95-98. XU Qianwei, YOU Chunan, LI Dayong. Analysis of construction influence of shield tunnel machine passing over old nearby tunnels[J]. Rock and Soil Mechanics, 2004, 25(Supp):95-98. (in Chinese)
[10] 张平, 范英娜, 王新. 盾构隧道上穿既有隧道的三维数值模拟[J]. 低温建筑技术, 2011(6):118-120. ZHANG Ping, FAN Yingna, WANG Xin. Three dimensional numerical simulation of a shield tunnel crossed above an existing tunnel[J]. Low Temperature Architecture Technology, 2011(6):118-120. (in Chinese)
[11] 黄德中, 马险峰, 王俊淞, 等. 软土地区盾构上穿越既有隧道的离心模拟研究[J]. 岩土工程学报, 2012, 34(3):520-527. HUANG Dezhong, MA Xianfeng, WANG Junsong, et al. Centrifuge modelling of effects of shield tunnels on existing tunnels in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(3):520-527. (in Chinese)
[12] 王如路. 上海地铁盾构隧道纵向变形分析[J]. 地下工程与隧道, 2009(4):1-6. WANG Rulu. Longitudinal deformation analysis for Shanghai subway tunnel constructed by shield method[J]. Underground Engineering and Tunnels, 2009(4):1-6(in Chinese)
[13] 周顺华, 何超, 肖军华. 环间错台效应下基坑开挖引起临近地铁盾构隧道变形的能量计算法[J]. 中国铁道科学, 2016, 37(3):53-60. ZHOU Shunhua, HE Chao, XIAO Junhua. Energy method for calculating deformation of adjacent shield tunnels due to foundation pit excavation considering step between rings[J]. China Railway Science, 2016, 37(3):53-60. (in Chinese)
[14] 林存刚. 盾构掘进地面隆陷及潮汐作用江底盾构隧道性状研究[D]. 杭州:浙江大学, 2014. LIN Cungang. Research on shield tunneling-induced ground surface heave and subsidence and behavior of underwater shield driven tunnels subject to tidal bores[D]. Hangzhou:Zhejiang University, 2014. (in Chinese)
[15] 魏纲. 盾构法隧道施工引起的土体变形三维解[C]//第二届全国工程安全与防护学术会议论文集. 北京:中国岩石力学与工程学会, 2010:369-374. WEI Gang. 3-D analytical solution of ground deformation induced by shield tunneling construction[C]//Proceedings of the second national conference on engineering security and protection. Beijing:Chinese Society for Rock Mechanics & Engineering, 2010:369-374. (in Chinese)
[16] 魏纲. 盾构法隧道施工引起的土体变形预测[J]. 岩石力学与工程学报, 2009, 28(2):418-424. WEI Gang. Prediction of ground deformation induced by shield tunneling construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(2):418-424. (in Chinese)
[17] 梁发云, 褚峰, 宋著, 等. 紧邻地铁枢纽深基坑变形特性离心模型试验研究[J]. 岩土力学, 2012, 33(3):657-664. LIANG Fayun, CHU Feng, SONG Zhu, et al. Centrifugal model test research on deformation behaviors of deep foundation pit adjacent to metro stations[J]. Rock and Soil Mechanics, 2012, 33(3):657-664. (in Chinese)
[18] SHEN Shuilong, WU Huaina, CUI Yujun, et al. Long-term settlement behavior of metro tunnels in the soft deposits of Shanghai[J]. Tunnelling and Underground Space Technology, 2014, (40):309-323.
[19] VESIC A B. Bending of beams resting on isotropic elastic solids[J]. Journal of Engineering Mechanics, 1961, 87(2):35-53.
[20] 刘晓强, 梁发云, 张浩, 等. 隧道穿越引起地下管线竖向位移的能量变分分析方法[J]. 岩土力学, 2014, 35(增刊2):217-222, 231. LIU Xiaoqiang, LIANG Fayun, ZHANG Hao, et al. Energy variational solution for settlement of buried pipeline induced by tunneling[J]. Rock and Soil Mechanics, 2014, 35(Supp.2):217-222, 231. (in Chinese)
[21] 林盼达, 张冬梅, 闫静雅. 运营盾构隧道结构安全评估方法研究[J]. 隧道建设, 2015, 35(增刊2):43-49. LIN Panda, ZHANG Dongmei, YAN Jingya. Study on assessment method for structural safety of operating shield-bored tunnels[J]. Tunnel Construction, 2015, 35(Supp.2):43-49. (in Chinese)
[22] 房明, 周翠英, 刘镇. 交叉隧道盾构施工参数与交叉角度对既有隧道的沉降影响研究[J]. 工程力学, 2011, 28(12):133-138. FANG Ming, ZHOU Cuiying, LIU Zhen. Influence of construction parameters and cross angle on existing tunnel settlement during undercrossing shield tunneling construction[J]. Engineering Mechanics, 2011, 28(12):133-138. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2018-05-30;改回日期:2018-06-10。
基金项目:国家自然科学基金项目(51778576);杭州市科委资助项目(20180533B07)
作者简介:魏纲(1977-),男,教授,博士,主要从事城市地下隧道的防灾减灾研究.E-mail:weig@zucc.edu.cn
更新日期/Last Update: 1900-01-01