[1]苗姜龙,陈曦,吕彦楠,等.基于BP神经网络的冻土路基变形预测与可靠度分析[J].自然灾害学报,2018,(04):081-87.[doi:10.13577/j.jnd.2018.0411]
 MIAO Jianglong,CHEN Xi,LV Yannan,et al.Prediction on deformation and reliability of subgrade of Qinghai-Tibet Railway based on BP neural network method[J].,2018,(04):081-87.[doi:10.13577/j.jnd.2018.0411]
点击复制

基于BP神经网络的冻土路基变形预测与可靠度分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年04期
页码:
081-87
栏目:
出版日期:
2018-09-28

文章信息/Info

Title:
Prediction on deformation and reliability of subgrade of Qinghai-Tibet Railway based on BP neural network method
作者:
苗姜龙 陈曦 吕彦楠 王冬勇
北京交通大学 土木建筑工程学院, 北京 100044
Author(s):
MIAO Jianglong CHEN Xi LV Yannan WANG Dongyong
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
关键词:
冻土路基BP神经网络冻胀融沉可靠度改进神经网络响应面法
Keywords:
subgrade in frozen regionBP neural networkfrost heavethaw settlementreliability indexINNRS method
分类号:
TU4;X43;X9
DOI:
10.13577/j.jnd.2018.0411
摘要:
目前,基于BP神经网络法进行冻土路基变形预测的可行性和有效性仍少有学者对其进行研究。运用MATLAB编制BP神经网络程序,并应用于青藏铁路预测路基变形的工程实例。在此基础上,又采用COMSOL有限元软件的多场耦合模块分析了同一路基的变形场、水热场。通过对比两种方法,验证了前者的科学性和有效性。进而提出了一种新的可靠度计算方法(INNRS法),这种方法将神经网络法和响应面法有机结合起来,只需一次迭代即可形成较准确的功能函数,使得计算可靠指标的效率大大提高。应用INNRS法,对路基变形的可靠度指标和失效概率进行了评价。
Abstract:
Few researches have been conducted on the feasibility and effectiveness of BP neural network method on the deformation prediction of subgrade in frozen region. In this study, the Qinghai-Tibet railway subgrade was taken as an example, and the hydrothermal field and deformation field of the subgrade were simulated and analyzed using the finite element software COMSOL. The simulation results were then used to verify the BP neural network model programmed by MATLAB. Furthermore, an improved neural network response surface method (INNRS) was proposed by combining the neural network and the response surface method. Numerical simulations disclose that the INNRS method can achieve the performance function with good accuracy only in one iteration. It can be applied to practical assessment on reliability index and probability of failure and subgrade in frozen region.

参考文献/References:

[1] 祁长青, 吴青柏, 施斌, 等. BP神经网络在冻土路基变形预测中的应用[J]. 水文地质工程地质, 2007(4):27-30. QI Changqing, WU Qingbo, SHI Bin, et al. Deformation characteristic analysis of representative landslides in Xiangxi River valley in the Three Gorges Reservoir area[J]. Hydrogeology and Engineering Geology, 2007(4):27-30. (in Chinese)
[2] 秦焱, 朱宏, 李旭伟. 基于改进型粒子群优化算法的BP网络在股票预测中的应用[J]. 计算机工程与科学, 2008, 30(4):66-68, 79. QIN Yan, ZHU Hong, LI Xuwei. A BP neural network based on improved Particle swarm optimization and its application in stock forecasting[J]. Computer Engineering & Science, 2008, 30(4):66-68, 79. (in Chinese)
[3] 祁长青. 青藏铁路冻土路基温度场随机有限元分析与变形可靠性研究[D]. 南京大学, 2005. QI Changqing. Research on Stochastic Temperature Field and Deformation Reliability of Qinghai-Tibet Railway Roadbed[D]. Nanjing University, 2005. (in Chinese)
[4] CHEN Xi, LIU Jiankun, FENG Yuan, et al. A pseudo-coupled numerical approach for stability analysis of frozen soil slopes based on finite element limit analysis method[J]. Sciences in Cold and Arid Regions, 2013, 5(4):478-87.
[5] 王涛. 多年冻土区路基随机温度场及变形场分析模型研究[D]. 中国矿业大学, 2015. WANG Tao. Study on Temperature the Analysis Model of Stochastic Fields and Displacement Fields in Permafro st Regions[D]. China University of Mining And Technology, 2015. (in Chinese)
[6] 隗新宇. 多年冻土区青藏公路楚玛尔河段路基沉降变形研究[D]. 北京交通大学, 2015. WEI Xinyu. Research on Highway at Subgrade Settlement of Qinghai-Tibet Chumaer River in Permafrost Regions[D]. Beijing Jiaotong University, 2015. (in Chinese)
[7] 白青波. 附面层参数标定及冻土路基水热稳定数值模拟方法初探[D]. 北京交通大学, 2016. BAI Qingbo. Determination of Boundary Layer Parameters and a Preliminary Research on Hydrothermal Stability of Subgrade in Cold Region[D]. Beijing Jiaotong University, 2016. (in Chinese)
[8] CHEN Xi, LIU Jiankun, XIE Nan, et al. Probabilistic analysis of embankment slope stability in frozen ground regions based on random finite element method[J]. Sciences in Cold and Arid Regions, 2015(4):354-364.
[9] 谭晓慧, 王建国, 刘新荣. 改进的响应面法及其在可靠度分析中的应用[J]. 岩石力学与工程学报, 2005(S2):5874-5879. TAN Xiaohui, WANG Jianguo, LIU Xinrong. Improved response surface method and its application to reliability analysis[J]. 2005(S2):5874-5879. (in Chinese)
[10] 刘小慧. 青藏铁路多年冻土路基可靠度研究[D]. 兰州交通大学, 2015. LIU Xiaohui. Study on the Reliability of Permafrost Roadbed in The Qinghai-Tibet Railway[D]. Lanzhou Jiaotong University, 2015. (in Chinese)

相似文献/References:

[1]党发宁,高闯洲,党维维,等.西安f7地裂缝发展变化的预测研究[J].自然灾害学报,2012,(03):170.
 DANG Faning,GAO Chuangzhou,DANG Weiwei,et al.Predictive research on development and change of ground fissures f7 in Xi’an[J].,2012,(04):170.
[2]余建星,田佳,谭振东.深水平台施工过程自然风险定量评估[J].自然灾害学报,2007,(01):113.
 YU Jian-xing,TIAN Jia,TAN Zhen-dong.Quantitative risk evaluation of natural disasters in construction of deepwater platform[J].,2007,(04):113.
[3]谭钦文,尹光志,魏作安.基于混沌优化神经网络的砂土液化预测模型[J].自然灾害学报,2009,(03):111.
 TAN Qin-wen,YIN Guang-zhi,WEI Zuo-an.Prediction model of sand liquefaction based on chaos optimization neural networks[J].,2009,(04):111.
[4]邵利民,傅刚,曹祥村,等.BP神经网络在台风路径预报中的应用[J].自然灾害学报,2009,(06):104.
 SHAO Li-min,FU Gang,CHAO Xiang-chun,et al.Application of BP neural network to forecasting typhoon tracks[J].,2009,(04):104.
[5]谢姆斯叶·艾尼瓦尔,塔西甫拉提·特依拜,王宏卫,等.基于BP神经网络的新疆干旱区典型绿洲土壤盐分预测[J].自然灾害学报,2013,(06):161.
 XIEMUSIYE·Ainiwaer,TASHPOLAT·Tiyip,WANG Hongwei,et al.Prediction of soil salinity in typical oasis of arid area in Xinjiang based on BP neural network[J].,2013,(04):161.
[6]李方明,陈国兴.基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报,2005,(02):108.
 LI Fang-ming,CHEN Guo-xing.Saturated sand liquefaction potential estimation method based on BP neural network[J].,2005,(04):108.
[7]接小峰,徐林荣,曹禄来,等.铁路水害预警雨量阈值预测方法及其应用[J].自然灾害学报,2015,(05):177.[doi:10.13577/j.jnd.2015.0520]
 JIE Xiaofeng,XU Linrong,CAO Lulai,et al.Early-warning rainfall threshold prediction and its application for railway water damage[J].,2015,(04):177.[doi:10.13577/j.jnd.2015.0520]
[8]朱林,姜立新,杨天青.BP神经网络模型在地震应急人员伤亡评估中的应用[J].自然灾害学报,2015,(06):033.[doi:10.13577/j.jnd.2015.0604]
 ZHU Lin,JIANG Lixin,YANG Tianqing.Application of BP neural network model to earthquake emergency casualty assessment[J].,2015,(04):033.[doi:10.13577/j.jnd.2015.0604]
[9]张铎,吴中海,李家存,等.滇西北永胜-宾川地区滑坡发育的影响因子分析及其动力成因与意义探讨[J].自然灾害学报,2016,(01):176.[doi:10.13577/j.jnd.2016.0621]
 ZHANG Duo,WU Zhonghai,LI Jiacun,et al.Analysis of the influential factor of landslide in Yongsheng-Binchuan region of northwest Yunnan and the exploration of its dynamic cause and significance[J].,2016,(04):176.[doi:10.13577/j.jnd.2016.0621]
[10]吕军,程先富,孙鸿鹄.基于最大熵谱和云模型的巢湖流域降水预测[J].自然灾害学报,2017,(01):048.[doi:10.13577/j.jnd.2017.0107]
 LÜ,Jun,CHENG Xianfu,et al.Precipitation prediction of Chaohu Basin Based on MEM and cloud model[J].,2017,(04):048.[doi:10.13577/j.jnd.2017.0107]

备注/Memo

备注/Memo:
收稿日期:2018-05-06;改回日期:2018-05-28。
基金项目:国家重点研发计划资助(2017YFC0404802);中央高校基本科研业务费专项基金(2016JBM043)
作者简介:苗姜龙(1992-),男,硕士研究生,主要从事岩土工程风险评价研究.E-mail:849290954@qq.com
通讯作者:陈曦(1977-),男,教授,博士,主要从事计算岩土力学和岩土工程风险评价研究.E-mail:xichen.geo@gmail.com
更新日期/Last Update: 1900-01-01