[1]高延红,赵静,郑盈盈,等.模拟自然潮差环境混凝土氯离子侵蚀对流区深度的相似性与随机性[J].自然灾害学报,2018,(05):063-69.[doi:10.13577/j.jnd.2018.0508]
 GAO Yanhong,ZHAO Jing,ZHENG Yingying,et al.Similarity and randomness of convection zone depth of chloride in concrete under simulated tidal environment[J].,2018,(05):063-69.[doi:10.13577/j.jnd.2018.0508]
点击复制

模拟自然潮差环境混凝土氯离子侵蚀对流区深度的相似性与随机性
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年05期
页码:
063-69
栏目:
出版日期:
2018-10-28

文章信息/Info

Title:
Similarity and randomness of convection zone depth of chloride in concrete under simulated tidal environment
作者:
高延红1 赵静1 郑盈盈1 张俊芝12 章玉容1
1. 浙江工业大学 建筑工程学院, 浙江 杭州 310014;
2. 浙江省工程结构与防灾减灾技术研究重点实验室, 浙江 杭州 310014
Author(s):
GAO Yanhong1 ZHAO Jing1 ZHENG Yingying1 ZHANG Junzhi12 ZHANG Yurong1
1. College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou 310014, China;
2. Key Laboratory of Civil Engineering Structure & Disaster Prevention and Mitigation Technology of Zhejiang Province, Hangzhou 310014, China
关键词:
混凝土对流区深度模拟潮差环境相似性随机性
Keywords:
concreteconvection zone depthsimulated tidal environmentsimilarityrandomness
分类号:
TU528.36;X93
DOI:
10.13577/j.jnd.2018.0508
摘要:
对流区深度是氯盐侵蚀环境下水泥基材料及其构件耐久性寿命评价的主要参数之一,由于受环境及材料等随机性因素的影响,对流区深度为随机变量。通过在人工气候模拟环境下的暴露试验,测得不同暴露时间后不同水灰比混凝土中的自由氯离子浓度及其对流区深度;对比自然潮差环境下的试验结果,研究了人工气候模拟环境条件下混凝土氯离子对流区深度的相似性与随机性。结果表明,在两种试验环境条件下,混凝土氯离子侵蚀具有一定的相似性,混凝土试件均在暴露一段时间后形成了明显的对流区,且对流区深度都在4 mm左右;人工气候模拟环境下,水灰比对混凝土氯离子对流区的深度及其分布类型无明显影响,而暴露时间和环境因素的影响较为明显;在人工气候模拟环境下,混凝土氯离子对流区深度总体上服从均值为3.76 mm标准差为0.92 mm的正态分布。
Abstract:
Convection zone depth is one of the main parameters for durability and service life prediction of cement based materials and structures under the chloride environment. It is worth noting that convection zone depth should be expressed as a random variable due to the influence of environmental factors and materials randomness. Based on an exposure test in artificial climate simulation environment, the free chloride concentrations and convection zone depths in concrete with different exposure times and water-cement ratios were measured. Compared with the experimental results in the natural tidal environment, the similarity and randomness of convective zone depth of chloride ion in concrete in artificial simulation environment were analyzed. Results showed that, there is a clear convection zone after exposing some time with depth of about 4 mm both in the field and artificial simulation environment. In addition, in the artificial simulated environment, the influence of water-cement ratio on the probabilistic distribution of convection zone depth is negligible, but the influences of exposure time and environment factors are obvious. In the artificial simulated environment, convection zone depth follows a Normal distribution with mean value of 3.76 mm and standard deviation of 0.92 mm. Environmental factors have a certain effect on the distribution type of convection zone depth of chloride ion in concrete.

参考文献/References:

[1] PANG L, LI Q W. Service life prediction of RC structures in marine environment using long term chloride ingress data:Comparison between exposure trials and real structure surveys[J]. Construction and Building Materials, 2016(113):979-987.
[2] Vera G D, Antón C, López M P, et al. Depassivation time estimation in reinforced concrete structures exposed to chloride ingress:A probabilistic approach[J]. Cement & Concrete Composites, 2017(79):21-33.
[3] Saassouh B, Lounis Z. Probabilistic modeling of chloride-induced corrosion in concrete structures using first-and second-order reliability methods[J]. Cement & Concrete Composites, 2012, 34(9):1082-1093.
[4] YU B, LIU J, Chen Z. Probabilistic evaluation method for corrosion risk of steel reinforcement based on concrete resistivity[J]. Construction and Building Materials, 2017(138):101-113.
[5] 高延红, 张杉, 周巧萍, 等. 自然潮差环境弯曲荷载作用下混凝土氯离子峰值浓度的分布[J]. 自然灾害学报, 2016, 25(1):103-109. GAO Yanhong, ZHANG Shan, ZHOU Qiaoping, et al. Distribution of peak concentration of chloride in concrete under flexural load in the natural tidal environment[J]. Journal of Natural Disasters, 2016, 25(1):103-109. (in Chinese)
[6] LIU P, YU Z W, LU Z H, et al. Predictive convection zone depth of chloride in concrete under chloride environment[J]. Cement & Concrete Composites, 2016(72):257-267.
[7] GAO Y H, ZHANG J Z, ZHANG S, et al. Probability distribution of convection zone depth of chloride in concrete in a marine tidal environment[J]. Construction and Building Materials, 2017(140):485-495.
[8] Hong K, Hooton R D. Effects of cyclic chloride exposure on penetration of concrete cover[J]. Cement and Concrete Research, 1999, 29(9):1379-1386.
[9] CHANG H, MU S, XIE D, et al. Influence of pore structure and moisture distribution on chloride "maximum phenomenon" in surface layer of specimens exposed to cyclic drying-wetting condition[J]. Construction and Building Materials, 2017(131):16-30.
[10] Lay S, Schiebl P. Service life models:instructions on methodology and application of models for the prediction of theresidual service life for classified environmental loads and types of structures in Europe[R]. LIFECON project, deliverable D3.2. Contract G1RD-CT-2000-00378; 2003.
[11] 王传坤, 高祥杰, 赵羽习, 等. 混凝土表层氯离子含量峰值分布和对流区厚度[J]. 硅酸盐通报, 2010, 29(2):262-267. WANG Chuankun, GAO Xiangjie, ZHAO Yuxi, et al. Peak value distribution of surface chloride concentration and convection depth of concrete[J]. Bullrtin of the Chinese Ceramic Society, 2010, 29(2):262-267. (in Chinese)
[12] 张立明. 基于现场暴露试验与室内耐久性试验之间相关性的混凝土结构耐久性研究[D]. 南京:南京航空航天大学, 2014. ZHANG Liming. Research on Durability of Reinforced Concrete Structure Based on the Correlation Between Field Exposure Test and Indoor Durability Test[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
[13] 刘鹏. 人工模拟和自然氯盐环境下混凝土氯盐侵蚀相似性研究[D]. 长沙:中南大学, 2013. LIU Peng. Research on Similarity of the Chloride Ingress in Concrete Under Natural and Artifical Simulation Environment[D]. Changsha:Central South University, 2013. (in Chinese)
[14] ZHANG J Z, ZHAO J, ZHANG Y R, et al. Instantaneous chloride diffusion coefficient and its time dependency ofconcrete exposed to a marine tidal environment[J]. Construction and Building Materials, 2018(167):225-234.
[15] 黄俊. 潮差区水泥基材料氯离子侵蚀模拟试验的相似性研究[D]. 杭州:浙江工业大学, 2013. HUANG Jun. Study of Similarity on Simulation Experiment Considering Chloride Ion Corrosion in Cement-based Material Under the Tidal Zone[D]. Hangzhou:Zhejiang University of Technology, 2013. (in Chinese)
[16] LIU P, YU Z, LU Z, et al. Predictive convection zone depth of chloride in concrete under chloride environment[J]. Cement & Concrete Composites, 2016(72):257-267.

相似文献/References:

[1]吴波,梁悦欢.高温下混凝土和钢筋强度的统计分析[J].自然灾害学报,2010,(01):136.
 WU Bo,LIANG Yue-huan.Statistic analysis of strengths of concrete and steel bars at elevated temperature[J].,2010,(05):136.
[2]张俊芝,王梁英,刘华挺,等.弯曲荷载对混凝土氯离子扩散与钢筋初锈时间的影响[J].自然灾害学报,2010,(03):013.
 ZHANG Jun-zhi,WANG Liang-ying,LIU Hua-ting,et al.Influence of flexural loading on diffusion of chlorine ion and corrosion initiation time of steel bar in concrete[J].,2010,(05):013.
[3]谢石连,郭连江,杨光丽.某桥墩承台病害分析与处理[J].自然灾害学报,2011,(03):087.
 XIE Shi-lian,GUO Lian-jiang,YANG Guang-li.Problem analysis and treatment for some pier cap[J].,2011,(05):087.
[4]李凤霞,浮海梅.某高层建筑筏板基础混凝土裂缝控制分析[J].自然灾害学报,2009,(03):178.
 LI Feng-xia,FU Hai-mei.Analysis of crack control of raft foundation concrete in a high building[J].,2009,(05):178.
[5]肖新华.混凝土结构抗震鉴定与加固技术及其应用[J].自然灾害学报,2009,(05):138.
 XIAO Xin-hua.Seismic appraisement and strengthening of concrete structure and their application[J].,2009,(05):138.
[6]高延红,伍亚玲,周巧萍,等.氯离子环境下混凝土钢筋坑蚀深度的随机性研究[J].自然灾害学报,2014,(01):221.[doi:10.13577/j.jnd.2014.0130]
 GAO Yanhong,WU Yaling,ZHOU Qiaoping,et al.Study on the randomness of pitting corrosion depth of steel bar in concrete under the chlorine ion environment[J].,2014,(05):221.[doi:10.13577/j.jnd.2014.0130]
[7]张俊芝,庄华夏,黄俊,等.自然潮差环境下掺合料对混凝土氯离子扩散性能衰减的影响[J].自然灾害学报,2014,(06):263.[doi:10.13577/j.jnd.2014.0633]
 ZHANG Junzhi,ZHUANG Huaxia,HUANG Jun,et al.Influence of admixture on attenuation of concrete chlorine diffusivity in the natural tidal range environment[J].,2014,(05):263.[doi:10.13577/j.jnd.2014.0633]
[8]刘文超,曹万林,叶天翔,等.基于循环水控制厚大基础混凝土施工温度裂缝的理论分析[J].自然灾害学报,2015,(06):195.[doi:10.13577/j.jnd.2015.0624]
 LIU Wenchao,CAO Wanlin,YE Tianxiang,et al.Theoretical analysis of temperature crack in mass concrete foundation based on the circulating water method[J].,2015,(05):195.[doi:10.13577/j.jnd.2015.0624]
[9]曹万林,刘文超,叶天翔,等.循环水控制厚大基础混凝土温度裂缝试验研究[J].自然灾害学报,2016,(01):097.[doi:10.13577/j.jnd.2016.0112]
 CAO Wanlin,LIU Wenchao,YE Tianxiang,et al.Experimental study on controlling temperature cracks of mass foundation concrete by circulating water[J].,2016,(05):097.[doi:10.13577/j.jnd.2016.0112]
[10]高延红,张杉,周巧萍,等.自然潮差环境弯曲荷载作用下混凝土氯离子峰值浓度的分布[J].自然灾害学报,2016,(01):103.[doi:10.13577/j.jnd.2016.0113]
 GAO Yanhong,ZHANG Shan,ZHOU Qiaoping,et al.Distribution of peak concentration of chlorion in concrete under flexural load in the natural tidal environment[J].,2016,(05):103.[doi:10.13577/j.jnd.2016.0113]

备注/Memo

备注/Memo:
收稿日期:2018-05-09;改回日期:2018-06-06。
基金项目:国家自然科学基金项目(51279181);浙江省自然科学基金项目(LY17E090007,LY13E090008,LQ18G010007)
作者简介:高延红(1968-),女,副教授,主要从事水利工程设计及工程安全研究.E-mail:yhgao@zjut.edu.cn
通讯作者:章玉容(1988-),女,助理研究员,博士后,主要从事混凝土结构及其耐久性研究.E-mail:yrzhang@zjut.edu.cn
更新日期/Last Update: 1900-01-01