[1]左慧婷,娄运生,李忠良,等.不同气候带典型区域水稻产量主控气候因子分析及预测[J].自然灾害学报,2018,(05):114-125.[doi:10.13577/j.jnd.2018.0514]
 ZUO Huiting,LOU Yunsheng,LI Zhongliang,et al.Analysis and prediction of major climate factors controlling rice yield in typical climate regions of China[J].,2018,(05):114-125.[doi:10.13577/j.jnd.2018.0514]
点击复制

不同气候带典型区域水稻产量主控气候因子分析及预测
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年05期
页码:
114-125
栏目:
出版日期:
2018-10-28

文章信息/Info

Title:
Analysis and prediction of major climate factors controlling rice yield in typical climate regions of China
作者:
左慧婷12 娄运生12 李忠良2 石一凡2 郑泽华2 王颖2
1. 南京信息工程大学 气象灾害预报预警与评估协同创新中心, 江苏 南京 210044;
2. 南京信息工程大学 江苏省农业气象重点实验室, 江苏 南京 210044
Author(s):
ZUO Huiting12 LOU Yunsheng12 LI Zhongliang2 SHI Yifan2 ZHENG Zehua2 WANG Ying2
1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
关键词:
水稻产量EEMD气象要素灰色系统ARIMA
Keywords:
grain yieldEEMDclimate factorgray systemARIMA
分类号:
P49;X16
DOI:
10.13577/j.jnd.2018.0514
摘要:
气候变化对粮食生产的影响存在区域差异,水稻是主要粮食作物,研究不同气候带水稻产量与主要气候因子的关系对区域粮食生产具有重要的理论和实际意义。本文基于灰色系统方法,以我国福建省、江苏省和黑龙江省为典型研究区域,分析亚热带、亚热带与暖温带的过度地带及暖温带三个气候带的近30年(1986—2015年)水稻生长季气候变化与水稻产量的关系,并预测其未来产量变化趋势。结果表明,近30年水稻生长季内福建省及江苏省区域气候变化总体呈现暖干化趋势,黑龙江省呈现变暖,而相对湿度无明显变化。各研究区降水量和温度与水稻产量的相关性显著,其中福建省和黑龙江省的水稻产量与降水量相关性最强,而江苏省水稻产量则与平均气温相关性最强。基于ARIMA模型预测,未来5年三个研究区的水稻产量均呈增产趋势,且增产较为平稳。
Abstract:
Climate is one of the main factors affecting agricultural production. Climate change effects on food productions depend on different climatic zones. Rice is one of main food crops in China. It is of theoretical and practical significance to study the relationships between rice yield and major climatic factors in different climatic zones. Based on the grey system method, this study investigated the relationships between rice yield and climatic factors during rice growth season in three climatic zones in China, i.e. subtropical, subtropical and warm-temperate transition zone, warm-temperate zone, and predicted rice yield trends in the future. Three provinces, i.e. Fujian, Jiangsu, and Heilongjiang are selected as typical regions for the three climatic zones, respectively. The results showed that, during rice growing season from 1986 to 2015, regional climate change in Fujian and Jiangsu provinces showed becoming warm and dry tendencies, while in Heilongjiang, there was no significant change in relative humidity. Significant correlations existed between precipitation and air temperature with rice yield in the selected provinces, precipitation was the predominant factor in rice productions of Fujian and Heilongjiang provinces, while average air temperature in that of Jiangsu province. Based on ARIMA model, rice yield will tend to increase stably in the next five years in the selected regions.

参考文献/References:

[1] IPCC. The Physical Science Basis Group I, WG1AR5_ALL_FINAL, 2014:37, 40, 46.
[2] 李勇, 杨晓光, 王文峰, 等. 气候变化背景下中国农业气候资源变化Ⅰ. 华南地区农业气候资源时空变化特征[J]. 应用生态学报, 2010, 21(10):2605-2614. LI Yong, YANG Xiaoguang, WANG Wenfeng, et al. Changes of China agricultural climate resources under the background of climate changeⅠ. Spatiotemporal change characteristics of agricultural climate resources in South China[J]. Chinese Journal of Applied Ecology, 2010, 21(10):2605-2614. (in Chinese)
[3] 代姝玮, 杨晓光, 赵孟, 等. 气候变化背景下中国农业气候资源变化Ⅱ.西南地区农业气候资源时空变化特征[J]. 应用生态学报, 2011, 22(2):442-452. DAI Shuwei, YANG Xiaoguang, ZHAO Meng, et al. Changes of China agricultural climate resources under the background of climate change Ⅱ. Spatiotemporal change characteristics of agricultural climate resources in Southwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(2):442-452. (in Chinese)
[4] 徐超, 杨晓光, 李勇, 等. 气候变化背景下中国农业气候资源变化Ⅲ.西北干旱区农业气候资源时空变化特征[J]. 应用生态学报, 2011, 22(3):763-772. XU Chao, YANG Xiaoguang, LI Yong, et al. Changes of China agricultural climate resources under the background of climate change Ⅲ. Spatiotemporal change characteristics of agricultural climate resources in Northwest Arid Area[J]. Chinese Journal of Applied Ecology, 2011, 22(3):763-772. (in Chinese)
[5] 丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(Ⅰ):中国气候变化的历史和未来趋势[J]. 气候变化研究进展, 2006, 2(1):3-8. DING Yihui, REB Guoyu, SHI Guangyu, et al. National assessment report of climate change(I):climate change in China and its future trend[J]. Advances in Climate Change Research, 2006, 2(1):3-8. (in Chinese)
[6] 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1):1-11. GUO Jianping. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1):1-11. (in Chinese)
[7] 梅方权, 吴宪章, 姚长溪, 等. 中国水稻种植区划[J]. 中国水稻科学, 1988, 2(3):97-110. MEI Fangquan, WU Xianzhang, YAO Changxi, et al. Rice cropping regionalization in China[J]. Chinese Journal of Rice Science, 1988, 2(3):97-110. (in Chinese)
[8] 江苏省人民政府外事办公室. 江苏农业概况[EB/OL]. (2015-03-13)[2018-06-06]. http://wb.jiangsu.gov.cn/art/2015/3/13/art_47375_2900539.html. Foreign Affairs Office of Jiangsu Provincial People’s Government. Agriculture in Jiangsu Province[EB/OL]. (2015-03-13)[2018-06-06].http://wb.jiangsu.gov.cn/art/2015/3/13/art_47375_2900539.html. (in Chinese)
[9] 中华人民共和国国家统计局. 黑龙江种植业结构调整潜力分析[EB/OL]. (2009-02-20)[2018-06-06]. http://www.stats.gov.cn/ztjc/ztfx/dfxx/200902/t20090220_34658.html. National Bureau of Statistics of the People’s Republic of China. Potential analysis of planting structure adjustment in Heilongjiang Province[EB/OL]. (2009-02-20)[2018-06-06]. http://www.stats.gov.cn/ztjc/ztfx/dfxx/200902/t20090220_34658.html. (in Chinese)
[10] LIU H L, LIU H B, LEI Q L, et al. Using the DSSAT model to simulate wheat yield and soil organic carbon under a wheat-maize cropping system in the North China Plain[J].Journal of Integrative Agriculture, 2017, 16(10):2300-2307.
[11] Ted Huffman, Budong Qian, Reinder De Jong, et al. Upscaling modeled crop yields to regional scale:A case study using DSSAT for spring wheat on the Canadian prairies[J]. Canadian Journal of Soil Science, 2015, 95(1):49-61.
[12] Zhao Q, Brocks S, Lenz-Wiedemann V I S, et al. Detecting spatial variability of paddy rice yield by combining the DNDC model with high resolution satellite images[J]. Agricultural Systems, 2017, 152(2017):47-57.
[13] Han J, Jia Z, Wu W, et al. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC[J]. Field Crops Research, 2014, 155(5):202-212.
[14] Huang J, Jia S, Ma H, et al. Dynamic simulation of growth process of winter wheat in main production areas of China based on WOFOST model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10):222-228.
[15] Mishra S K. Simulating the rice crop response to various inputs using WOFOST model for Faizabad district of Uttar Pradesh[J]. Journal of Agrometeorology, 2017, 16(SPECIAL ISSUE):125-130.
[16] Challinor A J, Watson J, Lobell D B, et al. A meta-analysis of crop yield under climate change and adaptation[J]. Nature Climate Change, 2014, 4(4):287-291.
[17] Luo Q, Bellotti W, Williams M, et al. Potential impact of climate change on wheat yield in South Australia[J]. Agricultural & Forest Meteorology, 2005, 132(3/4):273-285.
[18] Luo Q, Kathuria A. Modelling the response of wheat grain yield to climate change:a sensitivity analysis[J]. Theoretical & Applied Climatology, 2013, 111(1/2):173-182.
[19] Kassie B T, Asseng S, Rotter R P, et al. Exploring climate change impacts and adaptation options for maize production in the Central Rift Valley of Ethiopia using different climate change scenarios and crop models[J]. Climatic Change, 2015, 129(1/2):145-158.
[20] Zhang Z, Song X, Tao F, et al. Climate trends and crop production in China at county scale, 1980 to 2008[J]. Theoretical & Applied Climatology, 2016, 123(1/2):291-302.
[21] Kuwata K. Analysis of climate change impact on U.S. Crop Yields with Reanalysis Data[J]. Food & Cosmetics Toxicology, 2014, 10(5):655-70.
[22] 孟林, 王春乙, 任义方, 等. 长江中下游一季稻高温热害危险性特征及其对气候变化的响应[J]. 自然灾害学报, 2015, 24(6):80-89. MENG Lin, WANG Chunyi, REN Yifang, et al. Heat injury hazard characteristic of single cropping rice in middle and low reachers of Yangtze River and its response to climate change[J]. Journal of Natural Disasters, 2015, 24(6):80-89. (in Chinese)
[23] Innes P J, Tan D K Y, Ogtrop F V, et al. Effects of high-temperature episodes on wheat yields in New South Wales, Australia[J]. Agricultural & Forest Meteorology, 2015, 208(2015):95-107.
[24] Lobell D B, Burke M B. On the use of statistical models to predict crop yield responses to climate change[J]. Agricultural & Forest Meteorology, 2010, 150(11):1443-1452.
[25] Mihailovi,D. T, Lali, B, Dreskovi, N, et al. Climate change effects on crop yields in Serbia and related shifts of Köppen climate zones under the SRES-A1B and SRES-A2[J]. International Journal of Climatology, 2015, 35(11):3320-3334.
[26] Jancic M, Lalic B, Mihailovic D T, et al. Impact of climate change and carbon dioxide fertilization effect on irrigation water demand and yield of soybean in Serbia[J]. Journal of Agricultural Science, 2015, 153(8):1365-1379.
[27] Rezaei E E, Gaiser T, Siebert S, et al. Combined impacts of climate and nutrient fertilization on yields of pearl millet in Niger[J]. European Journal of Agronomy, 2014, 55(2):77-88.
[28] Vanuytrecht E, Raes D, Willems P. Regional and global climate projections increase mid-century yield variability and crop productivity in Belgium[J]. Regional Environmental Change, 2016, 16(3):659-672.
[29] 刘会玉, 林振山, 张明阳. 基于EMD的我国粮食产量波动及其成因多尺度分析[J]. 自然资源学报, 2005, 20(5):745-751. LIU Huiyu, LIN Zhenshan, ZHANG Mingyang. Analysis on the fluctuation of grain output in China and Its causes at muti-time scale based on empirical mode decomposition method[J]. Journal of Natural Resources, 2005, 20(5):745-751. (in Chinese)
[30] 刘思峰. 灰色系统理论及其应用[M]. 北京:科学出版社, 2010, 144-180. LIU Sifeng. Grey Theory and Its Application[M]. Beijing:Science Press, 2010, 144-180. (in Chinese)
[31] 温丹苹, 李静, 何朋飞. 黑龙江省农业气象灾害与大豆产量的灰色关联分析[J]. 自然灾害学报, 2017, 26(4):56-62. WEN Danping, LI Jing, HE Pengfei. Grey correlatin analysis of agro-meteorological disasters and sybean yield in HeiLongjiang Province[J]. Journal of Natural Disasters, 2017, 26(4):56-62. (in Chinese)
[32] 陈艳红, 胡胜德, 申倩. 基于ARIMA模型的中国粮食供求平衡及预测[J]. 广东农业科学, 2013, 40(5):230-233. CHEN Yanhong, HU Shengde, SHEN Qian. Balance and forcast on supply and demand of China’s grain with ARIMA model[J]. Agricultural Sciences of Guangdong, 2013, 40(5):230-233. (in Chinese)
[33] Rosenzweig C, Elliott J, Deryng D, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9):3268-3273.
[34] 周曙东, 朱红根. 气候变化对中国南方水稻产量的经济影响及其适应策略[J]. 中国人口·资源与环境, 2010, 20(10):152-157. ZHOU Shudong, ZHU Honggen. Economic analysis of climate change impact on the rice yield in Southern China and Its adaptive strategy[J]. China Population, Resources and Environment, 2010, 20(10):152-157. (in Chinese)
[35] 沈陈华. 气象因子对江苏省水稻单产的影响[J]. 生态学报, 2015, 35(12):4155-4167. SHEN Chenhua. Meteorological effects on rice yields in Jiangsu province[J]. Acta Ecologica Sinica, 2015, 35(12):4155-4167. (in Chinese)
[36] 程远, 丁书萍, 程卉, 等. 黑龙江省水稻种植产量与气候因子的关系[J]. 中国农学通报, 2012, 28(18):98-101. CHENG Yuan, DING Shuping, CHENG Hui, et al. The relationship between rice yield and climate factors of Heilongjiang province[J]. Chinese Agricultural Science Bulletin, 2012, 28(18):98-101. (in Chinese)

相似文献/References:

[1]黄珍珠,刘锦銮,刘尉,等.登陆广东的热带气旋对水稻产量的影响评估[J].自然灾害学报,2014,(04):170.[doi:10.13577/j.jnd.2014.0422]
 HUANG Zhenzhu,LIU Jinluan,LIU Wei,et al.Assessment of influence of tropical cyclones which land Guangdong on rice yield[J].,2014,(05):170.[doi:10.13577/j.jnd.2014.0422]

备注/Memo

备注/Memo:
收稿日期:2018-04-20;改回日期:2018-06-24。
基金项目:国家自然科学基金项目(41375159);江苏省自然科学基金项目(BK20131430)
作者简介:左慧婷(1989-),女,博士研究生,主要从事农业气象、遥感与气象应用等研究.E-mail:sophia890601@163.com
通讯作者:娄运生(1968-),男,教授,主要从事农业气象、全球变化生态学等研究.E-mail:yunshlou@163.com
更新日期/Last Update: 1900-01-01