[1]樊晓一,胡晓波,张睿骁,等.开阔型地形条件对滑坡运动距离的影响研究[J].自然灾害学报,2018,(05):188-196.[doi:10.13577/j.jnd.2018.0521]
 FAN Xiaoyi,HU Xiaobo,ZHANG Ruixiao,et al.Study on the open topography influence on the moving distances of landslides[J].,2018,(05):188-196.[doi:10.13577/j.jnd.2018.0521]
点击复制

开阔型地形条件对滑坡运动距离的影响研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
期数:
2018年05期
页码:
188-196
栏目:
出版日期:
2018-10-28

文章信息/Info

Title:
Study on the open topography influence on the moving distances of landslides
作者:
樊晓一12 胡晓波1 张睿骁1 张友谊12
1. 西南科技大学 土木工程与建筑学院, 四川 绵阳 621010;
2. 工程材料与结构冲击振动 四川省重点实验室, 四川 绵阳 621000
Author(s):
FAN Xiaoyi12 HU Xiaobo1 ZHANG Ruixiao1 ZHANG Youyi12
1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China;
2. Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyarg 621000, China
关键词:
开阔型地形运动距离体积地形参数滑坡
Keywords:
open topographymoving distancevolumetopography parameterlandslide
分类号:
X43
DOI:
10.13577/j.jnd.2018.0521
摘要:
在山区,斜坡前缘开阔的地形条件是人类活动的主要区域,滑坡灾害常导致严重的人员伤亡和财产损失。根据滑坡滑源区、运动区和堆积区的地形坡度及其变化,将开阔型滑坡的地形条件划分为坡脚型、凹面型、阶梯型3种类型。通过建立滑坡体积、地形参数与运动参数的非线性回归模型,分析体积及地形参数变化率对运动距离变化的影响特征。研究表明:体积作为滑坡运动距离的显著性因素在于滑坡体积在不同数量级上的分布,而在同一数量级内,仅凹面型、阶梯型滑坡的体积变化对最大水平运动距离变化的影响最大,地形参数对其余运动距离的变化影响大于滑坡体积。研究结果为开阔型滑坡的致灾程度评估提供了参考依据。
Abstract:
In mountainous regions, the open topography of slope-front areas is the main area of human activities, and landslides often cause serious casualties and property losses. On the basis of the slope morphology and the morphology of the landslide source, movement and accumulation areas, the open topography of landslides were divided into slope-toe, concave and stepped types. Nonlinear regression models of each landslide type were deduced for volume, topographic parameters and moving distance. The rules governing how the changes in volume and topographic parameters influenced the moving distances were revealed. The results showed that the landslide volume, which was a significant factor for landslide moving distance, spanned several orders of magnitude. However, within the same order of magnitude, the volume changes of concave and stepped landslides were the greatest influencing factors on the maximum horizontal distance, and topographic factors had greater influence than volume for other moving distances. This work provides a reference for disaster assessment of the landslide of open topography.

参考文献/References:

[1] 程谦恭, 张倬元, 黄润秋. 高速远程崩滑动力学的研究现状及发展趋势[J]. 山地学报, 2007, 25(1):72-84. CHENG Qiangong, ZHANG Zhuoyuan, HUANG Ruiqiu. Study on dynamics of rock avalanches:state of the art report[J]. Journal of Mountain Science, 2007, 25(1):72-84. (in Chinese)
[2] Sosio R, Crosta G B, Chen J H, et al. Modelling rock avalanche propagation onto glaciers[J]. Quaternary Science Reviews, 2012, 47:23-40.
[3] Yang C M, Yu W L, Dong J J, et al. Initiation, movement, and run-out of the giant Tsaoling landslide-What can we learn from a simple rigid block model and a velocity-displacement dependent friction law[J]. Engineering Geology, 2014, 182:158-181.
[4] Pudasaini S P, Miller S A. The hypermobility of huge landslides and avalanches[J]. Engineering Geology, 2013, 157:124-132.
[5] Zhang M,Mcsaveney M J. Rock avalanche deposits store quantitative evidence on internal shear during runout[J]. Geophys. Res. Lett., 2017, 44:8814-8821.
[6] Xing A G, Wang G, Yin Y P, et al. Dynamic analysis and field investigation of a fluidized landslide in Guanling, Guizhou, China[J]. Engineering Geology, 2014, 181:1-14.
[7] Dai Zili, Huang Yu, Cheng Hualin, et al. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake[J]. Engineering Geology, 2014, 180:21-33.
[8] 郝明辉, 许强, 杨磊, 等. 滑坡-碎屑流物理模型试验及运动机制探讨[J]. 岩土力学, 2014, 35(增刊1):127-132. HAO Minghui, XU Qiang, YANG Lei, et al. Physical modeling and movement mechanism of landslide-debris avalanches[J]. Rock and Soil Mechanics, 2014(S1):127-132. (in Chinese)
[9] Yang H.Q,Lan Y F, Lu L, et al. A quasi-three-dimensional spring-deformable-block model for runout analysis of rapid landslide motion[J]. Engineering Geology, 2015, 185:20-32.
[10] Qi Shengwen, Xu Qiang, Zhang Bing, et al. Source characteristics of long runout rock avalanches triggered by the 2008Wenchuan earthquake, China[J]. Journal of Asian Earth Sciences, 2011, 40:896-906.
[11] Hidetsugu Y, Toshihiko S, Hiroo O. Size-distance relationships for hummocks on volcanic rockslide-debris avalanche deposits in Japan[J]. Geomorphology, 2012, 136:76-87.
[12] 樊晓一, 冷晓玉, 段晓冬. 坡脚型与偏转型地震滑坡运动距离及地形因素作用[J]. 岩土力学, 2015, 36(5):1380-1388. FAN Xiaoyi, LENG Xiaoyu, DUAN Xiaodong. Topographical factors influence on the movement distances of seismic slope toe and turning landslides[J]. Rock and Soil Mechanics, 2015, 36(5):1380-1388. (in Chinese)
[13] 詹威威, 黄润秋, 裴向军, 等. 沟道型滑坡-碎屑流运动距离经验预测模型研究[J]. 工程地质学报, 2017, 25(1):154-163. ZHAN Weiwei, HUANG Runqiu, PEI Xiangjun, et al. Empirical prediction model for movement distance of gully-type rock avalanches[J]. Journal of Engineering Geology, 2017, 25(1):154-163. (in Chinese)
[14] Ouyang C J, Zhou K Q, Xu Q, et al. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China[J]. Landslides, 2016, 13:1-14.
[15] Yin Yueping, Li Bin, Wang Wenpei, et al. Mechanism of the December 2015 catastrophic landslide at the Shenzhen Landfill and controlling geotechnical risks of urbanization[J]. Engineering Geology, 2016, 2:230-249.
[16] 朱守彪, 石耀霖, 陆鸣, 等. 地震滑坡的动力学机制研究[J]. 中国科学:地球科学, 2013, 43(7):1096-1105. ZHU Shoubiao, SHI Yaolin, LU Ming, et al. Dynamic mechanisms of earthquake-triggered landslides[J]. Science China:Earth Sciences, 2013, 43(7):1096-1105. (in Chinese)
[17] Tang H M, LIU X, HU X L, et al. Evaluation of landslide mechanisms characterized by high-speed mass ejection and long-run-out based on events following the Wenchuan earthquake[J]. Engineering Geology, 2015, 194:12-24.
[18] 许强, 裴向军, 黄润秋. 汶川地震大型滑坡研究[M]. 北京:科学出版社, 2009. XU Qiang, PEI Xiangjun, HUANG Runqiu. Large-scale Landslides Induced by the Wenchuan Earthquake[M]. Beijing:Science Press, 2009. (in Chinese)
[19] Larsen I J, Montgomery D R, Korup O. Landslide erosion controlled by hillslope material[J]. Nature Geoscience, 2010, 3(4):247-251.
[20] 李秀珍, 孔纪名. "5·12"汶川地震诱发滑坡的滑动距离预测[J]. 四川大学学报:工程科学版, 2010, 42(5):243-249. LI Xiuzhen, KONG Jiming. Runout distance estimation of landslides triggered by"5·12"Wenchuan earthquake[J]. Journal of Sichuan University:Engineering Science Edition, 2010, 42(5):243-249. (in Chinese)
[21] 孟华君, 姜元俊, 张树轩, 等. 汶川地震前后都江堰山区滑坡滑动距离影响因素变化分析[J]. 地质力学学报, 2017, 23(6):904-913. MENG Huajun, JIANG Yuanjun, ZHANG Shuxuan, et al. Analysis on the change of influence factors on slipping displacement of landslides in dujiangyan area before and after the wenchuan earthquake[J]. Journal of Geomechanics, 2017, 23(6):904-913. (in Chinese)
[22] Legros F. The mobility of long-runout landslides[J]. Engineering Geology[J]. 2002, 63:301-331.

备注/Memo

备注/Memo:
收稿日期:2018-03-18;改回日期:2018-05-15。
基金项目:国家自然科学基金项目(41877524,41502334);工程材料与结构冲击振动四川省重点实验室开放基金项目
作者简介:樊晓一(1974-),男,教授,博士,主要从事地质灾害防灾减灾研究.E-mail:xyfan1003@126.com
更新日期/Last Update: 1900-01-01