[1]禹海涛,陈董祎,姜海西.考虑变形缝影响的盾构隧道纵向抗震性能分析[J].自然灾害学报,2018,27(06):010-18.[doi:10.13577/j.jnd.2018.0602]
 YU Haitao,CHEN Dongyi,JIANG Haixi.Longitudinal seismic performance analysis of shield tunnels considering the effect of deformation joints[J].,2018,27(06):010-18.[doi:10.13577/j.jnd.2018.0602]
点击复制

考虑变形缝影响的盾构隧道纵向抗震性能分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
27
期数:
2018年06期
页码:
010-18
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Longitudinal seismic performance analysis of shield tunnels considering the effect of deformation joints
作者:
禹海涛12 陈董祎3 姜海西3
1. 同济大学 岩土及地下工程教育部重点实验室, 上海 200092;
2. 上海市政工程设计研究总院(集团)有限公司, 上海 200092;
3. 同济大学 地下建筑与工程系, 上海 200092
Author(s):
YU Haitao12 CHEN Dongyi3 JIANG Haixi3
1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
2. Shanghai Municipal Engineering Design Institute(Group) Company Limited, Shanghai 200092, China;
3. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
关键词:
盾构隧道地震响应非一致输入变形缝减震效果
Keywords:
shield tunnelseismic responseasynchronous inputdeformation jointsdamping effect
分类号:
X43;X9;U452.2+8;P315.92
DOI:
10.13577/j.jnd.2018.0602
摘要:
盾构隧道通过设置变形缝可适应沿纵向的不均匀沉降和变形,但目前盾构隧道结构抗震设计尚未考虑变形缝的影响,且变形缝对盾构隧道的纵向抗震性能的影响机制尚不清晰。本文将盾构隧道简化为三维的等效梁单元,放置在粘弹性地基上,采用地基弹簧和阻尼单元模拟隧道与土体间的动力相互作用,并通过细观三维精细化模型来模拟变形缝,即采用沿环向分布的轴向拉压弹簧和切向剪切弹簧来真实模拟地震作用下的变形缝张开量和错位量等变形。综合考虑不同地震动输入方向和不同地震波频谱特性,对比分析盾构隧道有/无变形缝时的非一致地震响应特征,并对变形缝间距变化进行了参数敏感性分析,系统揭示了变形缝对盾构隧道纵向抗震性能的影响规律。分析结果表明:在隧道纵向布置变形缝能有效减小盾构隧道在地震作用下的轴力和弯矩,但随着变形缝间距的增大,减震效果显著降低。研究结论可为今后类似工程的抗震分析及变形缝设计提供指导。
Abstract:
Deformation joints can help shield tunnel accommodate uneven settlement and deformation along the longitudinal direction. At present, the longitudinal seismic analysis of shield tunnel does not take the influence of deformation joints into account, and the influence of deformation joints on the longitudinal seismic behavior of shield tunnel is not clear. In this paper, shield tunnel along longitudinal direction is simplified as a 3D beam element in viscoelastic foundation, and the interaction between tunnel and soil is simulated by foundation springs and dampers. A 3D refinement model is used to simulate the opening and displacement of deformation joints under earthquake by set axial compression spring and shear spring along circumferential distribution. The seismic response characteristics of shield tunnel with/without deformation joints are compared by input ground motion in different input directions and different spectral characteristics asynchronously, and parameter sensitivity analysis of the deformation joints spacing was carried out, which systematically revealed the influence law of deformation joints on the longitudinal seismic behavior of the shield tunnel. It was concluded that deformation joints can effectively reduce the internal force of shield tunnel under earthquake, and the damping effect of the deformation joints is weakened with the increase of their spacing. These conclusions can provide guidance for similar projects in seismic analysis and deformation joint design in the future.

参考文献/References:

[1] Newmark N M. Problems in wave propagation in soil and rock[C]//Selected Papers By Nathan M. Newmark:Civil Engineering Classics. ASCE, 2015:703-722.
[2] Kawajima K. Aseismic Design of Underground Structure[M]. Japan:Kajima Institute Publishing Co., Ltd. 1994.
[3] 刘晶波, 刘祥庆, 李彬. 地下结构抗震分析与设计的Pushover分析方法[J]. 土木工程学报, 2008(4):73-80. LIU Jingbo, LIU Xiangqin, LI bin. A pushover analysis method for seismic analysis and design of underground structures[J]. China Civil Engineering Journal, 2008(4):73-80. (in Chinese)
[4] 刘学山. 盾构隧道的纵向抗震分析研究[J]. 地下空间, 2003(2):166-172, 226. LIU Xueshan. Analysis and study of longitudinal earthquake resistance of shield tunnel[J]. Underground Space, 2003(2):166-172, 226. (in Chinese)
[5] Shiba Y, Kawashimak, Obinata N, et al. Evaluation procedure for seismic stress developed in shield tunnels based on seismic deformation method[J]. Journal of Structural Mechanics and Earthquake Engineering, 1989(404):385-394.
[6] Hashash Y M A, Hook J J, Schmidt B, et al. Seismic design and analysis of underground structures[J]. Tunneling and Underground Space Technology, 2001, 16(4):247-293.
[7] John C M S, Zahrah T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology 1987, 2(2):165-197.
[8] Gazetas G. Formulas and charts for impedances of surface and embedded foundations[J]. Journal of Geotechnical Engineering, 1991, 117(9):1363-1381.
[9] 李翔宇, 刘国彬, 杨潇, 等. 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36(4):662-670. LI Xiangyu, LIU Guobin, YANG Xiao, et al. Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4):662-670. (in Chinese)
[10] Zendagui D, Berrah M K. Spatial variation of seismic motion induced by propagation of body waves[J]. Soil Dynamics and Earthquake Engineering, 2002(22):805-811.
[11] 庞宝君, 杨震琦, 王立闻, 等. 橡胶材料的动态压缩性能及其应变率相关的本构模型[J]. 高压物理学报, 2011, 25(5):407-415. PANG Baojun, YANG Zhenqi, WANG Liwen, et al. Dynamic compression properties and constitutive model with strain rate effect of rubber material[J]. Journal of High Pressure Physics, 2011, 25(5):407-415. (in Chinese)

相似文献/References:

[1]傅玉勇.混凝土重力坝的地震响应分析[J].自然灾害学报,2012,21(01):123.
 FU Yuyong.Seismic response analysis of a concrete gravity dam[J].,2012,21(06):123.
[2]蔡海兵,彭立敏,李兴龙.工作竖井与隧道连接处支护结构横向地震响应[J].自然灾害学报,2011,20(02):188.
 CAI Hai-bing,PENG Li-min,LI Xin-long.Transverse seismic response of supporting structure of joint between working shaft and tunnel[J].,2011,20(06):188.
[3]冉申德,钟辉虹,肖宏彬.地震荷载作用下沉管地基砂垫层液化的可能性[J].自然灾害学报,2007,16(01):123.
 RAN Shen-de,ZHONG Hui-hong,XIAO Hong-bin.Liquefaction possibility of immersed tunnel’s sand ground under earthquake[J].,2007,16(06):123.
[4]于旭,宰金珉,王志华.土-结构相互作用对铅芯橡胶支座隔震结构的影响[J].自然灾害学报,2009,18(03):146.
 YU Xu,ZAI Jin-ming,WANG Zhi-hua.Effect of soil-structure interaction on lead core rubber bearing isolations structure[J].,2009,18(06):146.
[5]袁勇,王胜辉,彭定超.盾构隧道全寿命防水风险模糊评价[J].自然灾害学报,2005,14(02):081.
 YUAN Yong,WANG Sheng-hui,PENG Ding-chao.Fuzzy assessment of lifetime risk in water-proof of shield tunnel[J].,2005,14(06):081.
[6]李远瑛,张德生.单层球面网壳屋盖的地震响应有限元分析[J].自然灾害学报,2005,14(05):106.
 LI Yuan-ying,ZHANG De-sheng.Finite element analysis of seismic response for single layer spherical lattice shell[J].,2005,14(06):106.
[7]黄昆,邹立华.考虑耦合地震作用的底层柔性结构体系振动控制[J].自然灾害学报,2014,23(06):116.[doi:10.13577/j.jnd.2014.0614]
 HUANG Kun,ZOU Lihua.Vibration control of soft-first story structure considering coupling seismic action[J].,2014,23(06):116.[doi:10.13577/j.jnd.2014.0614]
[8]陈彦江,郝朝伟,李勇.系梁设置对双肢薄壁刚构桥地震响应影响分析[J].自然灾害学报,2015,24(04):063.[doi:10.13577/j.jnd.2015.0408]
 CHEN Yanjiang,HAO Chaowei,LI Yong.Effect of tie beam on seismic response of rigid frame bridge with double-leg thin-walled piers[J].,2015,24(06):063.[doi:10.13577/j.jnd.2015.0408]
[9]李雪红,梁陈,徐秀丽,等.多层立交隧道复杂节点结构地震响应特性分析[J].自然灾害学报,2018,27(02):074.[doi:10.13577/j.jnd.2018.0209]
 LI Xuehong,LIANG Chen,XU Xiuli,et al.Analysis of seismic response of complex multi-layer tunnel node structure[J].,2018,27(06):074.[doi:10.13577/j.jnd.2018.0209]
[10]王天利,李青宁.城市立交中分叉曲线桥梁地震响应研究[J].自然灾害学报,2018,27(03):179.[doi:10.13577/j.jnd.2018.0321]
 WANG Tianli,LI Qingning.Research on earthquake response of fork curved bridge in the city interchange[J].,2018,27(06):179.[doi:10.13577/j.jnd.2018.0321]
[11]黄忠凯,张冬梅.软土地区地表结构对盾构隧道地震响应影响的风险分析[J].自然灾害学报,2018,27(04):067.[doi:10.13577/j.jnd.2018.0409]
 HUANG Zhongkai,ZHANG Dongmei.Risk analysis of the seismic resposnse of shield tunnel considering the above ground structutre in soft deposits[J].,2018,27(06):067.[doi:10.13577/j.jnd.2018.0409]

备注/Memo

备注/Memo:
收稿日期:2018-09-18;改回日期:2018-10-07。
基金项目:国家重点研发计划项目(2017YFC1500703,2018YFC0809602);国家自然科学基金项目(51678438);上海市青年科技启明星计划资助项目(17QC1400500);上海市科学技术委员会(16DZ1200302,16DZ1201904,18DZ1205103);软弱土与环境土工教育部重点实验室(浙江大学)开放基金项目(2018P08)
作者简介:禹海涛(1983-),男,副教授,博士,主要从事地下结构抗震与抗爆动力学研究.E-mail:yuhaitao@tongji.edu.cn
更新日期/Last Update: 1900-01-01