[1]沈吉荣,王志华,林文品,等.液化土体侧向扩展条件下群桩动力响应振动台模型试验[J].自然灾害学报,2018,27(06):027-33.[doi:10.13577/j.jnd.2018.0604]
 SHEN Jirong,WANG Zhihua,LIN Wenpin,et al.Shaking table test on the dynamic response of pile group under lateral spreading in liquefied ground[J].,2018,27(06):027-33.[doi:10.13577/j.jnd.2018.0604]
点击复制

液化土体侧向扩展条件下群桩动力响应振动台模型试验
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
27
期数:
2018年06期
页码:
027-33
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Shaking table test on the dynamic response of pile group under lateral spreading in liquefied ground
作者:
沈吉荣 王志华 林文品 高洪梅 郭恩成
南京工业大学 城市地下空间研究中心, 江苏 南京 210009
Author(s):
SHEN Jirong WANG Zhihua LIN Wenpin GAO Hongmei GUO Encheng
Urban Underground Space Research Center, Nanjing Tech University, Nanjing 210009, China
关键词:
砂土液化液化流滑侧向大变形振动台试验
Keywords:
sand liquefactionliquid flowlateral deformationshaking table test
分类号:
X43;X9;TU435;P315.93
DOI:
10.13577/j.jnd.2018.0604
摘要:
为研究液化土体侧向扩展对群桩基础动力响应的影响,设计了可液化场地流动变形对桩基础地震反应影响的小型振动台模型试验。采用"钢带法"估计不同位置、不同类型场地地基土的侧向位移,探讨了地基土侧向流动速率与桩基结构地震内力的相关性,对比分析了上部结构惯性力及场地类型对桩身内力反应的影响,研究了由倾斜场地土体侧向扩展导致的群桩偏移运动。试验结果表明,桩周及下游土体的侧向位移随着土层深度的减小而逐步增大。可液化土体发生液化时所产生的流滑效应促使土体孔压加速消散。在水平场地条件下,土体侧向扩展沿土层深度方向线性分布;而倾斜场地条件下,土体的侧向扩展沿土层深度呈"抛物线型"分布。随着地基土液化,群桩基础受到的土体侧向约束力逐渐降低,进而使得群桩的峰值位移逐渐减小。
Abstract:
In order to study the influence of the lateral expansion of liquefied soil on the dynamic response of pile group foundation, a small-scale shaking table model test was designed for the influence of flow deformation of the liquefied site on the pile foundation seismic response. By using the "steel strip method", the lateral displacement of soils in different types of sites is estimated. The correlation between the lateral flow rate of the foundation soil and the seismic internal force of the pile foundation was discussed. The influence of the inertial force and site type on the internal force reaction of the pile body was compared and analyzed, and the pile group migration result from the lateral expansion in the sloping site was analyzed. The test results show that the lateral expansion of the soil around the pile and the downstream soil gradually increases from bottom to top along the depth direction. The effect of soil liquefaction and sliding on soil pore pressure dissipation can be promoted. The lateral displacement pattern of horizontal site is linear, while the distribution pattern of lateral displacement along the depth of sloping site is parabolic. The liquefaction of foundation soil weakens the lateral constraint of soil on pile group foundation, resulting in the decrease of the displacement amplitude of pile groups after liquefaction.

参考文献/References:

[1] 张建民. 水平地基液化后大变形对桩基础的影响[J]. 建筑结构学报, 2001, 22(5):75-78. ZHANG Jianmin. Effect of large horizontal post-liquefaction deformation of level ground on pile foundation[J]. Journal of Building Structures, 2001, 22(5):75-78. (in Chinese)
[2] Bhattacharya S, Madabhushi S P G, Bolton M D. An alternative mechanism of pile failure in liquefiable deposits during earthquakes[J]. Geotechnique, 2005, 55(3):259-263.
[3] Yoshida N, Tazoh T, Wakamatsu K, et al. Causes of Showa bridge collapse in the 1964 Niigata earthquake based on eyewitness testimony[J]. Soils and Foundations, 2007, 47(6):1075-1087.
[4] Hamada M. Large ground deformations and their effects on lifelines:1964 Niigata earthquake. Case Studies of liquefaction and lifelines performance during past earthquake[R]. Technical Report NCEER-92-0001, Volume-1, Japanese case studies, National Centre for Earthquake Engineering Research, Buffalo, NY, 1992.
[5] 丁剑霆, 姜淑珍, 包峰. 唐山地震桥梁震害回顾[J]. 世界地震工程, 2006, 22(1):69-71. DING Jianting, JIANG Shuzhen, BAO Feng. Review of seismic damage to bridges in Tangshan earthquake[J]. World Earthquake Engineering, 2006, 22(1):69-71. (in Chinese)
[6] 刘惠珊. 1995年阪神大地震的液化特点[J]. 工程抗震,2001, 3(1):22-26. LIU Huishan. Some features of liquefaction during the 1995 great Hanshin-Awaji earthquake[J]. Earthquake Resistant Engineering, 2001, 3(1):22-26. (in Chinese)
[7] 王睿, 张建民, 张嘎. 液化地基侧向流动引起的桩基础破坏分析[J]. 岩土力学, 2011, 32(s1):501-506. WANG Rui, ZHANG Jianmin, ZHANG Ga. Analysis of failure of piled foundation due to lateral spreading in liquefied soils[J]. Rock and Soil Mechanics, 2011, 32(s1):501-506. (in Chinese)
[8] 蒋莼秋. 世界地震工程100年(1891-1991)编年简史[J]. 世界地震工程, 1992, 3(1):14-21. JIANG Chunqiu. A brief history of the world earthquake engineering in the past 100 years(1891-1991)[J]. World Earthquake Engineering, 1992, 3(1):14-21. (in Chinese)
[9] Kuwabaraf. An elastic analysis of piled raft foundations in a homogeneous soil[J]. Engineering Structures, 1989, 29(1):81-92.
[10] 汪明武, TOBITA T, IAI S. 倾斜液化场地桩基地震响应离心机试验研究[J]. 岩石力学与工程学报, 2009, 28(10):2012-2017. WANG Mingwu, TOBITA T, IAI S. Dynamic centrifuge tests of seismic responses of pile foundations in inclined liquefiable soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10):2012-2017. (in Chinese)
[11] 刘惠珊, 徐凤萍, 李鹏程. 液化引起的地面大位移对工程的影响及研究现状[J]. 工程抗震, 1997, 2(6):21-26. LIU huishan, XU Fengping, LI Pengcheng. Influence of large displacement on the project caused by liquefaction and its research status[J]. Earthquake Resistant Engineering, 1997, 2(6):21-26. (in Chinese)
[12] Haeri S M, Kavand A, Rahmani I, et al. Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing[J]. Soil Dynamics and Earthquake Engineering, 2012(38):25-45.
[13] Yasuda S, Ishihara K, Morimoto I, et al. Large-scale shaking table tests on pile foundations in liquefied ground[C]//Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand, Paper, 2000.
[14] Elgamal A, He L, Lu J, et al. Liquefaction-induced lateral load on piles[C]//Proceedings of the Fourth International Conference on Earthquake Engineering. Taipei, 2006.
[15] Madabhushi S P G, Teymur B, Haigh S K, et al. Modelling of liquefaction and lateral spreading[C]//International Workshop on Earthquake Simulation in Geotechnical Engineering, Cleveland, 2001.
[16] Haigh S K, Madabhushi S P G. Centrifuge modelling of lateral spreading past pile foundations[C]//International Conference on Physical Modelling in Geotechnics. 2002.
[17] 陈苏, 陈国兴, 韩晓健, 等. 基于最优圆拟合原理的非接触性动态位移测试方法及可视化软件的研发[J]. 岩土工程学报, 2013, 35(增刊2):369-374. CHEN Su, CHEN Guoxing, HAN Xiaojian, et al. Non-contact displacement test based on optimal circle fitting method and development of visual software[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2):369-374. (in Chinese)

相似文献/References:

[1]盛俭,袁晓铭,王禹萌,等.岩土震害影响因子权重研究 ——以砂土液化为例[J].自然灾害学报,2012,21(02):076.
 SHENG Jian,YUAN Xiaoming,WANG Yumeng,et al.Influence factor weights analysis of rock and soil earthquake damages:a case study from sand liquefaction[J].,2012,21(06):076.
[2]冉申德,钟辉虹,肖宏彬.地震荷载作用下沉管地基砂垫层液化的可能性[J].自然灾害学报,2007,16(01):123.
 RAN Shen-de,ZHONG Hui-hong,XIAO Hong-bin.Liquefaction possibility of immersed tunnel’s sand ground under earthquake[J].,2007,16(06):123.
[3]陈国兴,李方明.基于RBF神经网络模型的砂土液化震陷预估法[J].自然灾害学报,2008,17(01):180.
 CHEN Guo-xing,LI Fang-ming.Seismic settlement estimation of sand liquefaction based on RBF neural network model[J].,2008,17(06):180.
[4]李方明,陈国兴.基于BP神经网络的饱和砂土液化判别方法[J].自然灾害学报,2005,14(02):108.
 LI Fang-ming,CHEN Guo-xing.Saturated sand liquefaction potential estimation method based on BP neural network[J].,2005,14(06):108.

备注/Memo

备注/Memo:
收稿日期:2018-09-12;改回日期:2018-10-20。
基金项目:国家自然科学基金项目(51378257,51678300)
作者简介:沈吉荣(1993-),男,硕士,主要从事土体地震液化研究.E-mail:18362963750@163.com
通讯作者:王志华(1977-),男,教授,博士,主要从事土力学与地震工程研究.E-mail:wzhnjut@163.com
更新日期/Last Update: 1900-01-01