[1]苗雨,施洋,王苏阳,等.基于竖向台阵地震记录的非线性场地反应研究[J].自然灾害学报,2018,27(06):051-58.[doi:10.13577/j.jnd.2018.0607]
 MIAO Yu,SHI Yang,WANG Suyang,et al.Assessing nonlinear soil behavior using vertical array data: a case at TCGH16 station from KiK-Net in Japan[J].,2018,27(06):051-58.[doi:10.13577/j.jnd.2018.0607]
点击复制

基于竖向台阵地震记录的非线性场地反应研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
27
期数:
2018年06期
页码:
051-58
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Assessing nonlinear soil behavior using vertical array data: a case at TCGH16 station from KiK-Net in Japan
作者:
苗雨1 施洋1 王苏阳12 王海云2
1. 华中科技大学 土木工程与力学学院, 湖北 武汉 430074;
2. 中国地震局 工程力学研究所, 黑龙江 哈尔滨 150081
Author(s):
MIAO Yu1 SHI Yang1 WANG Suyang12 WANG Haiyun2
1. School of Civil Engineering and Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150081, China
关键词:
竖向台阵场地反应本构关系剪切模量比曲线地震干涉测量法
Keywords:
vertical arraysite responseconstitutive relationshear modulus ratio curvesseismic interferometry
分类号:
X43;X9;TU921
DOI:
10.13577/j.jnd.2018.0607
摘要:
利用日本KiK-Net台网中TCGH16竖向台阵在2009年1月到2014年6月间收集的1 646组地震记录,提取了原位等效应力-应变关系以及等效剪切模量比-应变曲线,建立了土动力学参数与地震动峰值加速度之间的关系,研究了非线性场地反应的阈值与程度。结果表明:(1)TCGH16台阵所处场地的等效剪切模量比曲线在等效应变超过线性阈值应变(约为2×10-5)时开始缓慢下降,在等效应变超过体积阈值应变(约为1×10-4)时迅速下降。(2)当地震动强度分别为100、200、400和800 cm/s2时,场地的等效剪切模量分别下降了约5%、11%、22%、42%。(3)TCGH16台阵发生场地非线性反应的阈值约为40 cm/s2,证实了非线性场地反应普遍存在于中等强度的地震动中。
Abstract:
In this study, we analyze acceleration time histories data at TCGH16 vertical array in Japan, recorded between January 2009 to June 2014, to evaluate nonlinear soil behavior. Ground motion records provided by seismic vertical arrays allow estimation of in-situ soil dynamic parameters. Using classic hyperbolic models, we quantitatively assess the relationships between the soil dynamic parameters and level of ground motion. We found nonlinearity starts at a quite low level of strain of 2×10-5 and becomes much more significant beyond a relative high level of strain of 1×10-4. The threshold strains from ground motion observations are well consistent with those from previous laboratory tests. When PGA comes to 100, 200, 400 and 800 cm/s2, the shear modulus degradation is about 5%, 11%, 22% and 42%, respectively. Finally, we infer that the threshold acceleration for nonlinear response at TCGH16 array is about 40 cm/s2, which indicates clearly that nonlinear site response may occur during moderate-level ground motion.

参考文献/References:

[1] Vucetic M. Cyclic threshold shear strains in soils[J]. Journal of Geotechnical Engineering, 1994, 120(12):2208-2228.
[2] Beresnev I A, Wen K L. Nonlinear soil response-A reality?[J]. Bulletin of the Seismological Society of America, 1996, 86(6):1964-1978.
[3] Chin B H, Aki K. Simultaneous study of the source, path, and site effects on strong ground motion during the 1989 LomaPrieta earthquake:a preliminary result on pervasive nonlinear site effects[J]. Bulletin of the Seismological Society of America, 1991, 81(5):1859-1884.
[4] Wen K L,Beresnev I A, Yeh Y T. Nonlinear soil amplification inferred from downhole strong seismic motion data[J]. Geophysical Research Letters, 1994, 21(24):2625-2628.
[5] Rubinstein J L. Nonlinear site response in medium magnitude earthquakes near parkfield, California[J]. Bulletin of the Seismological Society of America, 2011, 101(1):275-286.
[6] Ghofrani H, Atkinson G M, Goda K. Implications of the 2011M9.0 Tohoku Japan earthquake for the treatment of site effects in large earthquakes[J]. Bulletin of Earthquake Engineering, 2013, 11(1):171-203.
[7] Wu C, Peng Z, Benzion Y. Refined thresholds for non-linear ground motion and temporal changes of site response associated with medium-size earthquakes[J]. Geophysical Journal International, 2010, 182(3):1567-1576.
[8] Regnier J, Cadet H, Bonilla L F, et al. Assessing nonlinear behavior of soils in seismic site response:statistical analysis on KiK-net strong-motion data[J]. Bulletin of the Seismological Society of America, 2013, 103(3):1750-1770.
[9] 王海云. 基于强震观测数据的土层场地反应的研究现状[J]. 地震工程与工程振动, 2014, 34(4):42-47. WANG Haiyun. A review of study on soil site response estimating from strong motion data[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):42-47. (in Chinese)
[10] Wu C, Peng Z, Benzion Y. Refined thresholds for non-linear ground motion and temporal changes of site response associated with medium-size earthquakes[J]. Geophysical Journal International, 2010, 182(3):1567-1576.
[11] Chandra J, Gueguen P, Steidl J H, et al. In situ assessment of the G-γ, curve for characterizing the nonlinear response of soil:application to the garner valley downhole array and the wildlife liquefaction array[J]. Bulletin of the Seismological Society of America, 2015, 105(2A):993-1010.
[12] Zhao J X, Hu J, Jiang F, et al. Nonlinear site models derived from 1D analyses for ground-motion prediction equations using site class as the site parameter[J]. Bulletin of the Seismological Society of America, 2015, 105(4):2010-2022.
[13] Ren Y, Wen R, Yao X, et al. Five parameters for the evaluation of the soil nonlinearity during the Ms 8.0 Wenchuan Earthquake using the HVSR method[J]. Earth, Planets and Space, 2017, 69(1):116.
[14] GB 50011-2010建筑抗震设计规范[S]. 北京:中国建筑工业出版社, 2010. GB 50011-2010 Code for Seismic Design of Buildings[S]. Beijing:China Architecture Building Press, 2010. (in Chinese)
[15] Building Seismic Safety Council (BSSC). NEHRP Recommended Seismic Provisions for New Buildings and Other Structures[S]. Washington D.C., FEMA P-1050, 2015.
[16] Nakata N, Snieder R. Estimating near-surface shear wave velocities in Japan by applying seismic interferometry to KiK-net data[J]. Journal of Geophysical Research:Solid Earth, 2012, 117(1):13.
[17] Clayton R W, Wiggins R A. Source shape estimation and deconvolution ofteleseismic bodywaves[J]. Geophysical Journal of the Royal Astronomical Society, 1976, 47(1):151-177.
[18] Seed H B, Wong R T, Idriss I M, et al. Moduli and damping factors for dynamic analyses of cohesionless soils[J]. Journal of Geotechnical Engineering, 1986, 112(11):1016-1032.
[19] Ishihara K. Soil Behaviour in Earthquake Geotechnics[M]. Clarendon Press, 1996.
[20] Hardin B O, Black W L. Closure to vibration modulus of normally consolidated clays[J]. Journal of the Soil Mechanics and Foundation Division,1969, 94(2):1531-1537.
[21] Wu C, Peng Z. Long-term change of site response after the Mw9.0 Tohoku earthquake in Japan[J]. Earth, Planets and Space, 2012, 64(12):1259-1266.
[22] Vucetic M, Dobry R. Effect of soil plasticity on cyclic response[J]. Journal of Geotechnical Engineering, 1991, 117(1):89-107.

备注/Memo

备注/Memo:
收稿日期:2018-09-13;改回日期:2018-10-23。
基金项目:国家自然科学基金项目(41372335,51778260)
作者简介:苗雨(1979-),男,教授、博士,主要从事岩土工程数值计算方法及抗震研究.E-mail:miaoyu@hust.edu.cn
更新日期/Last Update: 1900-01-01