[1]左熹,毛昆明,周恩全.基于液化效应的地下结构动力反应及简化分析方法研究[J].自然灾害学报,2018,27(06):098-108.[doi:10.13577/j.jnd.2018.0613]
 ZUO Xi,MAO Kunming,ZHOU Enquan.Research on dynamic response of underground structure and simplified analysis method based on liquefaction effect[J].,2018,27(06):098-108.[doi:10.13577/j.jnd.2018.0613]
点击复制

基于液化效应的地下结构动力反应及简化分析方法研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
27
期数:
2018年06期
页码:
098-108
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Research on dynamic response of underground structure and simplified analysis method based on liquefaction effect
作者:
左熹1 毛昆明1 周恩全2
1. 金陵科技学院 建筑工程学院, 江苏 南京 211169;
2. 江苏大学 土木工程与力学学院, 江苏 镇江 212013
Author(s):
ZUO Xi1 MAO Kunming1 ZHOU Enquan2
1. Institute of Architectural Engineering, Jinling institute of technology, Nanjing 211169, China;
2. Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang 212013, China
关键词:
液化效应地下结构动力反应简化分析方法地震动
Keywords:
liquefaction effectunderground structuredynamic responsesimplified analysis methodground motion
分类号:
X43;X9;TU432;TU93;P315.93
DOI:
10.13577/j.jnd.2018.0613
摘要:
为了分析液化条件下的地下结构动力反应以及得到相应的简化分析方法,采用数值计算方法,基于ABAQUS软件平台,获得了液化场地的孔压效应,得出了液化场地对地下结构动力作用影响,分析了地下结构的损伤特性和变形特征。结果表明:随着峰值加速度的增加,场地的液化区域逐渐增大,孔压比的极大值区域出现在地下结构顶板上方;由于上覆土层的影响,地下结构的损伤以压缩损伤为主;在相同地震动作用下,液化场地中的地下结构损伤程度大于非液化场地中的地下结构损伤程度,并且得出地下结构的变形是以侧向变形为主。针对液化场地对地下结构的作用效应,建立土-地下结构体系的简化力学模型,得出液化土体中地下结构侧向变形的解析解,并通过了数值分析结果验证了该简化分析方法正确性和可行性。
Abstract:
Based on the ABAQUS software platform to analyze the effects of pore pressure and to study the dynamic response of underground structures on the liquefaction site, it obtained the damage characteristic and deformation features of the underground structure, in order to research dynamic response of underground structure and simplified analysis method based on liquefaction effect. The results showed that with the increase of peak acceleration, the liquefaction area gradually expanded. The maximum value area of the pore pressure ratio appears above the underground structure roof; due to the influence of the overburden, the damage of underground structure is mainly to compression injuries; At the same ground motion, the damage degree of underground structure in liquefaction site is greater than non-liquefied site, then concluded that deformation of underground structure is mainly lateral deformation. According to the liquefied ground effect on the underground structure, it establish a simplified mechanical model of soil-underground structure system and obtain analytical solution of lateral deformation of underground structures, and then it verified the correctness and feasibility of the simplified method through the results of numerical analysis.

参考文献/References:

[1] BOBET A. Effect of pore water pressure on tunnel support during static and seismic loading[J]. Tunnelling and Underground Space Technology, 2003, 18(4):377-393.
[2] AZADI M, HOSSEINI S M. The uplifting behavior of shallow tunnels within the liquefiable soils under cyclic loadings[J]. Tunnelling and Underground Space Technology, 2010, 25(2):158-167.
[3] Asheghabadi M S, Matinmanesh H. Finite element seismic analysis of cylindrical tunnel in sandy soils with consideration of soil-tunnel interaction[J]. Procedia Engineering, 2011, 14(1):3162-3169.
[4] Azadiab M. The Seismic behavior of urban tunnels in soft saturated soils[J]. Procedia Engineering, 2011, 14(14):3069-3075.
[5] 陶连金, 王文沛, 张波, 等. 竖向强震作用下密贴地铁地下交叉结构动力响应分析[J]. 岩土工程学报, 2012, 3(34):433-437. TAO Lianjin, WANG Wenpei, ZHANG Bo, et al. Dynamic response of closely-attached intersecting underground subway structures under vertical strong ground motion[J]. Chinese Journal of Geotechnical Engineering, 2012, 3(34):433-437. (in Chinese)
[6] 刘晶波, 王文晖, 刘祥庆, 等. Rayleigh波作用下地下结构地震反应影响分析[J]. 振动与冲击, 2013, 32(16):95-99. LIU Jingbo, WANG Wenhui, LIU Xiangqing, et al. Influence analysis on seismic response of underground structures under propagation of rayleigh waves[J]. Journal of Vibration and Shock, 2013, 32(16):95-99. (in Chinese)
[7] Lee T H, Park D, Nguyen D D, et al. Damage analysis of cut-and-cover tunnel structures under seismic loading[J]. Bulletin of Earthquake Engineering, 2016, 14(2):413-431.
[8] YANG Z H, LAN H X, ZHANG Y S. Nonlinear dynamic failure process of tunnel-fault system in response to strong seismic even[J]. Journal of Asian Earth Sciences, 2013, 15(64):125-135.
[9] Debiasi E, Gajo A, Zonta D. On the seismic response of shallow-buried rectangular structures[J]. Tunnelling and Underground Space Technology, 2013, 38(38):99-113.
[10] 陈国兴, 左熹, 庄海洋, 等. 地铁隧道地震反应数值模拟与试验的对比分析[J]. 自然灾害学报, 2007, 16(6):81-87. CHEN Guoxing, ZUO Xi, ZHUANG Haiyang, et al. Contrast analysis of numerical simulation of subway tunnel earthquake response with test result[J]. Journal of Natural Disasters, 2007, 16(6):81-87. (in Chinese)
[11] 左熹, 周恩全, 任艳. 考虑液化场地流变效应的地下结构侧向作用力研究[J]. 振动与冲击, 2016, 35(19):58-62. ZUO Xi, ZHOU Enquan, REN Yan. Lateral force of underground structures considering rheological effect of liquefied[J]. Journal of Vibration and Shock, 2016, 35(19):58-62. (in Chinese)
[12] 左熹, 陈国兴, 王志华, 等. 地铁车站结构临界破坏特性的振动台试验[J]. 振动. 测试与诊断, 2016, 36(5):865-873. ZUO Xi, CHEN Guoxing, WANG Zhihua, et al. Shaking table model test on critical failure characteristics of subway station structure[J]. Journal of Vibration, Measurement & Diagnosis, 2016, 36(5):865-873. (in Chinese)
[13] 阮滨, 赵丁凤, 陈国兴. 基于修正Davidenkov本构模型与Byrne孔压增量模型的有效应力计算法及其验证[J]. 应用基础与工程科学学报, 2017, 25(5):956-966. RUAN Bin, ZHAO Dingfeng, CHEN Guoxing, et al. A new effective stress method using the integration algorithm of the modified Davidenkov constitutive model and the Byrne pore pressure increment model, and validation and calibration[J]. Journal of Basic Science and Engineering, 2017, 25(5):956-966. (in Chinese)
[14] 张鑫磊, 王志华, 许振巍, 等. 土体液化大位移条件下群桩动力反应振动台模型试验[J]. 工程力学, 2016, 35(5):150-156. ZHANG Xinlei, WANG Zhihua, XU Zhenwei, et al. Shaking table model tests on dynamic response of pile groups under liquefaction-induced large ground displacement[J]. Engineering Mechanics, 2016, 35(5):150-156. (in Chinese)
[15] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892-900.
[16] Cubrinovski M, Ishihara K. Simplified method for analysis of piles undergoing lateral spreading in liquefied soils[J]. Soils and Foundations, 2004, 44(5):119-133.
[17] 张雄, 李得虎. 数学方法论与解题研究[M]. 北京:高等教育出版社. ZHANG Xiong, LI Dehu. Research on Mathematical Methodology and Problem Solving[M]. Beijing:Higher Education Press, 2013. (in Chinese)

相似文献/References:

[1]张建毅,袁晓铭,孙锐,等.地下结构地震横向应变传递及其影响因素[J].自然灾害学报,2010,19(02):161.
 ZHANG Jian-yi,YUAN Xiao-ming,SUN Rui,et al.Transmission of seismic soil layer strain to underground structure and its influence factors[J].,2010,19(06):161.
[2]庄海洋,宰金珉,陈国兴.土-地下结构的非线性动力相互作用——理论及应用[J].自然灾害学报,2006,15(06):174.
 ZHUANG Hai-yang,ZAI Jin-min,CHEN Guo-xing.Nonlinear dynamic interaction between soil and underground structure:theory and application[J].,2006,15(06):174.
[3]王建宁,付继赛,庄海洋,等.节点圈梁对复杂异跨地铁车站结构地震反应的影响[J].自然灾害学报,2018,27(06):019.[doi:10.13577/j.jnd.2018.0603]
 WANG Jianning,FU Jisai,ZHUANG Haiyang,et al.Effect of ring beam at variable-span joint on earthquake responses of unequal-span subway station[J].,2018,27(06):019.[doi:10.13577/j.jnd.2018.0603]

备注/Memo

备注/Memo:
收稿日期:2018-09-07;改回日期:2018-10-08。
基金项目:国家自然科学基金项目(51408281);江苏省自然科学基金项目(BK20140108,BK20150519);江苏省青蓝工程资助项目(2016)
作者简介:左熹(1982-),男,副教授,主要从事土动力学与地下结构抗震的研究.E-mail:zxjit@jit.edu.cn
更新日期/Last Update: 1900-01-01