ZHOU Yongyi,ZHANG Jianjing,CAO Licong,et al.Shaking table test research of single piles with towering structures[J].,2018,27(06):133-141.[doi:10.13577/j.jnd.2018.0617]





Shaking table test research of single piles with towering structures
周永毅1 张建经1 曹礼聪1 欧阳芳2 王志佳3 廖蔚茗1
1. 西南交通大学 土木工程学院, 四川 成都 611756;
2. 湖北第二师范学院 建筑与材料工程学院, 湖北 武汉 430000;
3. 海南大学 土木工程学院, 海南 海口 570228
ZHOU Yongyi1 ZHANG Jianjing1 CAO Licong1 OUYANG Fang2 WANG Zhijia3 LIAO Weiming1
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 611756 China;
2. Department of Architecture and Materials Engineering, Hubei University of Education, Wuhan 430000 China;
3. School of Civil Engineering, Hainan University, Haikou 570228, China
shaking table testsingle piletowering structurelateral seismic responseseismic prevention
The lateral seismic response of towering structures (wind turbines, bridges with high pier, et al.) is one of the main factors that influence the seismic stability, and it is meaningful to carry out the related research for the prevention and disaster mitigation of these structures. Lateral seismic response of pile foundations is studied in this paper basing on the shaking table test of single pile. Firstly, the pre-event memory of acceleration data is used to identify the noise component and determine the frequency edges for filter. Then the acceleration response is compared with Gohl’s shaking table test, so as to illustrate the influence of superstructure on lateral seismic response. Then test data recorded by different sensors are used to calculate the same physical quantity in order to evaluate the quality of test data. After that, dynamic p-y response of soil-pile is studied. The results show that:(1)The pre-event memory can be used to frequency edges for filter combining with signal-to-noise ratio after FFT transformation. (2)The superstructure has a great effect on the lateral acceleration response. In contrast to Gohl’s test, the acceleration amplification coefficient is only 0.59 times, but the displacement response amplitude is 10.5 times. (3)The type of pile foundations and site conditions can influence the p-y response greatly. In contrast to Wilson’s test, the maximum lateral displacement of this test is 1/13 of it. (4)there exists a great stiffness difference at different side of pile which has a negative effect on the stability of superstructures and is rarely mentioned in the test with usual superstructures.


[1] 唐浩, 石隽峰, 唐亮, 等. 液化场地桥梁群桩-土耦合体系强震反应分析[J]. 地震工程学报, 2016, 38(6):869-876. TANG Hao, SHI Xiufeng, TANG Liang, et al. Strong seismic response of pile group-soil coupling system in liquefied ground[J]. China Earthquake Engineering Journal, 2016, 38(6):869-876. (in Chinese)
[2] 李飒, 王耀存, 蒲玉成, 等. 海洋平台打桩过程中溜桩对桩基影响的研究[J]. 地震工程学报, 2014, 36(3):462-467. LI Sa, WANG Yaocun, PU Yucheng, et al. Influence of pile sinking on pile capacity during pile driving on offshore platforms[J]. China Earthquake Engineering Journal, 2014, 36(3):462-467. (in Chinese)
[3] 陈国兴, 张菁莉. 深厚软弱地基上多层地下室-桩基-双塔高层建筑的地震反应分析[J]. 自然灾害学报, 2004, 13(1):105-111. CHEN Guoxing, ZHANG Jingli. Numerical simulation of the earthquake response for double tower high-rise building with pile-multistoried basements on deep soft sites[J]. Journal of Natural Disasters, 2004, 13(1):105-111. (in Chinese)
[4] 中华人民共和国交通运输部. 汶川地震公路震害图集[M]. 人民交通出版社, 2009. Department of transportation, People’s Republic of China. Earthquake Damage Atlas of Wenchuan Earthquake Road[M]. People’s Transportation Press, 2009. (in Chinese)
[5] 徐龙军, 何晓云, 谢礼立. 海上风电工程基础结构抗震性能研究[J]. 地震工程与工程振动, 2012, 32(3):1-7. XU Longjun, HE Xiaoyun, XIE Lili. On seismic performance of offshore wind turbine foundation and structures[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(3):1-7. (in Chinese)
[6] 凌贤长, 唐亮. 液化场地桩基侧向响应分析中p-y曲线模型研究进展[J]. 力学进展, 2010(3):250-262. LING Xianchang, TANG Liang. Recent advance of p-y curve to model lateral response of pile foundation on liquefied ground[J]. Advances in Mechanics, 2010(3):250-262. (in Chinese)
[7] 谢定义. 土动力学[M]. 高等教育出版社, 2011. XIE Dingyi. Soil dynamics[M]. Advanced Education Press, 2011. (in Chinese)
[8] Gohl W B. Response of Pile Foundations to Simulated Earthquake Loading:Experimental and Analytical Results Volume I[D]. University of British Columbia, 1991.
[9] Wilson D W. Soil Pile Superstructure Interaction in Liquefying Sand and Soft Clay[D]. Ph D dissertation, Department of Civil & Environmental Engineering College Engineering, University of California at Davis, September 1998.
[10] 冯士伦, 王建华. 海洋平台桩基的振动台模型试验研究[J]. 岩石力学与工程学报, 2006, 25(s1):3229-3234. FENG Shilun, WANG Jianhua. Shake table mode l test on pile fo undation o f offshore platforms[J]. Chinese Jo urnal of Rock Mechanics and Engineering, 2006, 25(S1):3229-3234. (in Chinese)
[11] 苏雷, 凌贤长, 唐亮, 等. 可液化场地桥梁群桩基动力反应振动台试验研究[J]. 防灾减灾工程学报, 2015, 35(2):186-191. SU Lei, LING Xianchang, TANG Liang, et al. Shaking table tests on dynamic responses of pile group foundations for bridge in liquefiable ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(2):186-191. (in Chinese)
[12] Maiorano R M S, Sanctis L D, Aversa S, et al. Kinematic response analysis of piled foundations under seismic excitation[J]. Revue Canadienne De Géotechnique, 2009, 46(5):571-584.
[13] Rahmani A, Taiebat M, Finn W D L, et al. Evaluation of p-y curves used in practice for seismic analysis of soil-pile interaction[J]. Geotechnical Special Publication, 2012(225):1780-1788.
[14] 张亚旭, 王修信, 庄海洋. 土-桩-框架结构非线性相互作用的精细数值模型及其验证[J]. 防灾减灾工程学报, 2010, 30(5):558-566. ZHANG Yaxu, WANG Xiuxin, ZHUANG Haiyang. Fine numerical modeing of nonlinear soil-pile-frame structure interaction system and verification[J]. Journal of Disaster Drevention and Mitigation Engineering, 2010, 30(5):558-566. (in Chinese)
[15] Gerolymos N, Gazetas G. Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities[J]. Soil Dynamics & Earthquake Engineering, 2006, 26(5):363-376.
[16] Allotey N, Naggar M H E. Generalized dynamic Winkler model for nonlinear soil-structure interaction analysis[J]. Canadian Geotechnical Journal, 2008, 45(4):560-573.
[17] 迟明杰, 赵成刚, 李小军. 砂土剪胀机理的研究[J]. 土木工程学报, 2009(3):99-104. CHI Mingjie, ZHAO Chenggang, LI Xiaojun. Stress-dilation mechanical of sands[J]. China Civil Engineering Journal, 2009, 42(3):99-104. (in Chinese)
[18] 左照坤, 童朝霞. 近海风机单桩基础桩周土应力特征分析[J]. 地震工程学报, 2014, 36(3):549-554. ZUO Zhaokun, TONG Zhaoxia. Stress characteristics of soil around the pile of a monopole foundation in offshore wind turbines[J]. China Earthquake Engineering Journal, 2014, 36(3):549-554. (in Chinese)
[19] 张德文, 张建民. 桩基础抗震性能的简易评价方法[J]. 地震工程学报, 2013, 35(1):69-83. ZHANU Dewen, ZHANU Jianmin. Simplified method for evaluating seismic performance of pile foudation[J]. China Earthquake Engineering Journal, 2013, 35(1):69-83. (in Chinese)
[20] Rovithis E, Kirtas E, Pitilakis K. Experimental p-y loops for estimating seismic soil-pile interaction[J]. Bulletin of Earthquake Engineering, 2009, 7(3):719-736.
[21] 樊剑, 吕超, 张辉. 基于离散谐小波变换的地震波时变谱估计及非平稳地震波人工合成[J]. 地震学报, 2009, 31(3):333-341. FAN Jian, LV Chao, ZHANG Hui. Time-varying spectrum estimation and artificial non-stationary ground motion simulation via dyadic harmonic wavelet transform[J]. Acta Seismologica Sinica, 2009, 31(3):333-341. (in Chinese)
[22] 魏晓光, 李亚南. 基于水工设计反应谱的人工地震波合成及应用[J]. 世界地震工程, 2014(4):234-239. WEI Xiaoguang, LI Yanan. Synthesis and application of artificial seismic waves based on hydraulic design response spectrum[J]. World Eathquake Engineering, 2014(4):234-239. (in Chinese)
[23] Zhang L, Silva F, Grismala R. Ultimate lateral resistance to piles in cohesionless soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2005, 131(1):78-83.


 LIU Hongbiao,WANG Mei,ZHANG Qiang.Virtual design of shaking table test in sine-swept vibration[J].,2014,23(06):252.[doi:10.13577/j.jnd.2014.0134]
 CAO Wanlin,ZHANG Si,ZHOU Zhongyi,et al.Shake table test study on composite adobe masonry structure with sliding base isolation[J].,2015,24(06):131.[doi:10.13577/j.jnd.2015.0616]
 LU Junlong,ZHANG Yin.Shake table test on dynamic response of multi-ribbed wall structure model excited by tri-dimension earthquake wave[J].,2017,26(06):077.[doi:10.13577/j.jnd.2017.0609]
 LI Xuehong,LIANG Chen,XU Xiuli,et al.Analysis of seismic response of complex multi-layer tunnel node structure[J].,2018,27(06):074.[doi:10.13577/j.jnd.2018.0209]
 GUAN Zhenchang,XU Qiu,DENG Tao.Seismic responses of large section tunnelwith shallow cover and unsymmetrical loading[J].,2018,27(06):068.[doi:10.13577/j.jnd.2018.0308]
 LIU Zixin,LIU Zhangjun.Probability density evolution analysis of a shear-wall structure by shaking table test[J].,2018,27(06):137.[doi:10.13577/j.jnd.2018.0418]
 SHEN Jirong,WANG Zhihua,LIN Wenpin,et al.Shaking table test on the dynamic response of pile group under lateral spreading in liquefied ground[J].,2018,27(06):027.[doi:10.13577/j.jnd.2018.0604]
 WANG Huijuan,WANG Ping,YU Yifan,et al.The effect of complex soil structure loess field on earthquake ground motion[J].,2018,27(06):075.[doi:10.13577/j.jnd.2018.0610]
 SHENG Tao,XIAO Chang,LI Shuiming,et al.Shaking table test on the horizontal seismic isolation and anti-liquefaction performance of sandbag layers[J].,2019,28(06):009.[doi:10.13577/j.jnd.2019.0102]
 MAO Chenxi,CHANG Xu.Shake table tests of a self-centering RC frame structure under mainshock-aftershock ground motions[J].,2019,28(06):001.[doi:10.13577/j.jnd.2019.0401]


更新日期/Last Update: 1900-01-01