[1]周永毅,张建经,曹礼聪,等.长大高耸结构的单桩基础振动台试验研究[J].自然灾害学报,2018,27(06):133-141.[doi:10.13577/j.jnd.2018.0617]
 ZHOU Yongyi,ZHANG Jianjing,CAO Licong,et al.Shaking table test research of single piles with towering structures[J].,2018,27(06):133-141.[doi:10.13577/j.jnd.2018.0617]
点击复制

长大高耸结构的单桩基础振动台试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
27
期数:
2018年06期
页码:
133-141
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Shaking table test research of single piles with towering structures
作者:
周永毅1 张建经1 曹礼聪1 欧阳芳2 王志佳3 廖蔚茗1
1. 西南交通大学 土木工程学院, 四川 成都 611756;
2. 湖北第二师范学院 建筑与材料工程学院, 湖北 武汉 430000;
3. 海南大学 土木工程学院, 海南 海口 570228
Author(s):
ZHOU Yongyi1 ZHANG Jianjing1 CAO Licong1 OUYANG Fang2 WANG Zhijia3 LIAO Weiming1
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 611756 China;
2. Department of Architecture and Materials Engineering, Hubei University of Education, Wuhan 430000 China;
3. School of Civil Engineering, Hainan University, Haikou 570228, China
关键词:
振动台试验单桩基础高耸结构横向地震响应防震减灾
Keywords:
shaking table testsingle piletowering structurelateral seismic responseseismic prevention
分类号:
X43;X93;TU473;P315.93
DOI:
10.13577/j.jnd.2018.0617
摘要:
横向地震响应是影响长大高耸结构(如风机、超高桥墩桥梁等)抗震稳定性的重要因素,开展此方面的研究对于此类结构的防震减灾具有积极意义。本文基于前期开展的单桩基础振动台试验,研究了地震激励下的桩基横向地震响应规律。首先使用加速度空采段数据对环境噪声进行了分析,为滤波器提供合理的截止频率,并将加速度响应结果与Gohl所开展试验进行了对比,以说明上部结构对桩基横向响应的影响。然后使用应变片数据转化得到了桩-土体系的p-y(土抗力-横向位移)数据,并通过不同传感器数据对同一物理量的记录情况对比,验证了试验数据质量,在此基础上研究桩基动力p-y响应规律。所得结果表明:(1)空采段数据所携带的噪声信息可以通过FFT变换后,利用信噪比为滤波器提供合理的截止频率;(2)上部结构对横向加速度响应影响显著,与Gohl试验相比,本文试验土面处加速度放大系数仅是其0.59倍,而位移响应幅值是其10.5倍;(3)桩基类型、场地条件对p-y响应影响显著,与Wilson试验结果相比,本试验p-y曲线的最大横向位移仅是其1/13;(4)地震作用下桩基一侧出现了明显的桩土间隙,而另一侧则不存在(刚度一侧加强,一侧减弱),这种两侧的差异性变化会严重影响结构的稳定性,但在其他非高耸结构的桩基振动台试验中少有记录和分析。
Abstract:
The lateral seismic response of towering structures (wind turbines, bridges with high pier, et al.) is one of the main factors that influence the seismic stability, and it is meaningful to carry out the related research for the prevention and disaster mitigation of these structures. Lateral seismic response of pile foundations is studied in this paper basing on the shaking table test of single pile. Firstly, the pre-event memory of acceleration data is used to identify the noise component and determine the frequency edges for filter. Then the acceleration response is compared with Gohl’s shaking table test, so as to illustrate the influence of superstructure on lateral seismic response. Then test data recorded by different sensors are used to calculate the same physical quantity in order to evaluate the quality of test data. After that, dynamic p-y response of soil-pile is studied. The results show that:(1)The pre-event memory can be used to frequency edges for filter combining with signal-to-noise ratio after FFT transformation. (2)The superstructure has a great effect on the lateral acceleration response. In contrast to Gohl’s test, the acceleration amplification coefficient is only 0.59 times, but the displacement response amplitude is 10.5 times. (3)The type of pile foundations and site conditions can influence the p-y response greatly. In contrast to Wilson’s test, the maximum lateral displacement of this test is 1/13 of it. (4)there exists a great stiffness difference at different side of pile which has a negative effect on the stability of superstructures and is rarely mentioned in the test with usual superstructures.

参考文献/References:

[1] 唐浩, 石隽峰, 唐亮, 等. 液化场地桥梁群桩-土耦合体系强震反应分析[J]. 地震工程学报, 2016, 38(6):869-876. TANG Hao, SHI Xiufeng, TANG Liang, et al. Strong seismic response of pile group-soil coupling system in liquefied ground[J]. China Earthquake Engineering Journal, 2016, 38(6):869-876. (in Chinese)
[2] 李飒, 王耀存, 蒲玉成, 等. 海洋平台打桩过程中溜桩对桩基影响的研究[J]. 地震工程学报, 2014, 36(3):462-467. LI Sa, WANG Yaocun, PU Yucheng, et al. Influence of pile sinking on pile capacity during pile driving on offshore platforms[J]. China Earthquake Engineering Journal, 2014, 36(3):462-467. (in Chinese)
[3] 陈国兴, 张菁莉. 深厚软弱地基上多层地下室-桩基-双塔高层建筑的地震反应分析[J]. 自然灾害学报, 2004, 13(1):105-111. CHEN Guoxing, ZHANG Jingli. Numerical simulation of the earthquake response for double tower high-rise building with pile-multistoried basements on deep soft sites[J]. Journal of Natural Disasters, 2004, 13(1):105-111. (in Chinese)
[4] 中华人民共和国交通运输部. 汶川地震公路震害图集[M]. 人民交通出版社, 2009. Department of transportation, People’s Republic of China. Earthquake Damage Atlas of Wenchuan Earthquake Road[M]. People’s Transportation Press, 2009. (in Chinese)
[5] 徐龙军, 何晓云, 谢礼立. 海上风电工程基础结构抗震性能研究[J]. 地震工程与工程振动, 2012, 32(3):1-7. XU Longjun, HE Xiaoyun, XIE Lili. On seismic performance of offshore wind turbine foundation and structures[J]. Earthquake Engineering and Engineering Dynamics, 2012, 32(3):1-7. (in Chinese)
[6] 凌贤长, 唐亮. 液化场地桩基侧向响应分析中p-y曲线模型研究进展[J]. 力学进展, 2010(3):250-262. LING Xianchang, TANG Liang. Recent advance of p-y curve to model lateral response of pile foundation on liquefied ground[J]. Advances in Mechanics, 2010(3):250-262. (in Chinese)
[7] 谢定义. 土动力学[M]. 高等教育出版社, 2011. XIE Dingyi. Soil dynamics[M]. Advanced Education Press, 2011. (in Chinese)
[8] Gohl W B. Response of Pile Foundations to Simulated Earthquake Loading:Experimental and Analytical Results Volume I[D]. University of British Columbia, 1991.
[9] Wilson D W. Soil Pile Superstructure Interaction in Liquefying Sand and Soft Clay[D]. Ph D dissertation, Department of Civil & Environmental Engineering College Engineering, University of California at Davis, September 1998.
[10] 冯士伦, 王建华. 海洋平台桩基的振动台模型试验研究[J]. 岩石力学与工程学报, 2006, 25(s1):3229-3234. FENG Shilun, WANG Jianhua. Shake table mode l test on pile fo undation o f offshore platforms[J]. Chinese Jo urnal of Rock Mechanics and Engineering, 2006, 25(S1):3229-3234. (in Chinese)
[11] 苏雷, 凌贤长, 唐亮, 等. 可液化场地桥梁群桩基动力反应振动台试验研究[J]. 防灾减灾工程学报, 2015, 35(2):186-191. SU Lei, LING Xianchang, TANG Liang, et al. Shaking table tests on dynamic responses of pile group foundations for bridge in liquefiable ground[J]. Journal of Disaster Prevention and Mitigation Engineering, 2015, 35(2):186-191. (in Chinese)
[12] Maiorano R M S, Sanctis L D, Aversa S, et al. Kinematic response analysis of piled foundations under seismic excitation[J]. Revue Canadienne De Géotechnique, 2009, 46(5):571-584.
[13] Rahmani A, Taiebat M, Finn W D L, et al. Evaluation of p-y curves used in practice for seismic analysis of soil-pile interaction[J]. Geotechnical Special Publication, 2012(225):1780-1788.
[14] 张亚旭, 王修信, 庄海洋. 土-桩-框架结构非线性相互作用的精细数值模型及其验证[J]. 防灾减灾工程学报, 2010, 30(5):558-566. ZHANG Yaxu, WANG Xiuxin, ZHUANG Haiyang. Fine numerical modeing of nonlinear soil-pile-frame structure interaction system and verification[J]. Journal of Disaster Drevention and Mitigation Engineering, 2010, 30(5):558-566. (in Chinese)
[15] Gerolymos N, Gazetas G. Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities[J]. Soil Dynamics & Earthquake Engineering, 2006, 26(5):363-376.
[16] Allotey N, Naggar M H E. Generalized dynamic Winkler model for nonlinear soil-structure interaction analysis[J]. Canadian Geotechnical Journal, 2008, 45(4):560-573.
[17] 迟明杰, 赵成刚, 李小军. 砂土剪胀机理的研究[J]. 土木工程学报, 2009(3):99-104. CHI Mingjie, ZHAO Chenggang, LI Xiaojun. Stress-dilation mechanical of sands[J]. China Civil Engineering Journal, 2009, 42(3):99-104. (in Chinese)
[18] 左照坤, 童朝霞. 近海风机单桩基础桩周土应力特征分析[J]. 地震工程学报, 2014, 36(3):549-554. ZUO Zhaokun, TONG Zhaoxia. Stress characteristics of soil around the pile of a monopole foundation in offshore wind turbines[J]. China Earthquake Engineering Journal, 2014, 36(3):549-554. (in Chinese)
[19] 张德文, 张建民. 桩基础抗震性能的简易评价方法[J]. 地震工程学报, 2013, 35(1):69-83. ZHANU Dewen, ZHANU Jianmin. Simplified method for evaluating seismic performance of pile foudation[J]. China Earthquake Engineering Journal, 2013, 35(1):69-83. (in Chinese)
[20] Rovithis E, Kirtas E, Pitilakis K. Experimental p-y loops for estimating seismic soil-pile interaction[J]. Bulletin of Earthquake Engineering, 2009, 7(3):719-736.
[21] 樊剑, 吕超, 张辉. 基于离散谐小波变换的地震波时变谱估计及非平稳地震波人工合成[J]. 地震学报, 2009, 31(3):333-341. FAN Jian, LV Chao, ZHANG Hui. Time-varying spectrum estimation and artificial non-stationary ground motion simulation via dyadic harmonic wavelet transform[J]. Acta Seismologica Sinica, 2009, 31(3):333-341. (in Chinese)
[22] 魏晓光, 李亚南. 基于水工设计反应谱的人工地震波合成及应用[J]. 世界地震工程, 2014(4):234-239. WEI Xiaoguang, LI Yanan. Synthesis and application of artificial seismic waves based on hydraulic design response spectrum[J]. World Eathquake Engineering, 2014(4):234-239. (in Chinese)
[23] Zhang L, Silva F, Grismala R. Ultimate lateral resistance to piles in cohesionless soils[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2005, 131(1):78-83.

相似文献/References:

[1]刘红彪,王梅,张强.正弦扫频振动台试验的虚拟设计[J].自然灾害学报,2014,23(01):252.[doi:10.13577/j.jnd.2014.0134]
 LIU Hongbiao,WANG Mei,ZHANG Qiang.Virtual design of shaking table test in sine-swept vibration[J].,2014,23(06):252.[doi:10.13577/j.jnd.2014.0134]
[2]曹万林,张思,周中一,等.基础滑移隔震土坯组合砌体结构振动台试验[J].自然灾害学报,2015,24(06):131.[doi:10.13577/j.jnd.2015.0616]
 CAO Wanlin,ZHANG Si,ZHOU Zhongyi,et al.Shake table test study on composite adobe masonry structure with sliding base isolation[J].,2015,24(06):131.[doi:10.13577/j.jnd.2015.0616]
[3]卢俊龙,张荫.三向地震作用下密肋复合墙结构模型振动台试验研究[J].自然灾害学报,2017,26(06):077.[doi:10.13577/j.jnd.2017.0609]
 LU Junlong,ZHANG Yin.Shake table test on dynamic response of multi-ribbed wall structure model excited by tri-dimension earthquake wave[J].,2017,26(06):077.[doi:10.13577/j.jnd.2017.0609]
[4]李雪红,梁陈,徐秀丽,等.多层立交隧道复杂节点结构地震响应特性分析[J].自然灾害学报,2018,27(02):074.[doi:10.13577/j.jnd.2018.0209]
 LI Xuehong,LIANG Chen,XU Xiuli,et al.Analysis of seismic response of complex multi-layer tunnel node structure[J].,2018,27(06):074.[doi:10.13577/j.jnd.2018.0209]
[5]关振长,徐遒,邓涛.浅埋偏压条件下特大断面隧道地震动态响应的试验研究[J].自然灾害学报,2018,27(03):068.[doi:10.13577/j.jnd.2018.0308]
 GUAN Zhenchang,XU Qiu,DENG Tao.Seismic responses of large section tunnelwith shallow cover and unsymmetrical loading[J].,2018,27(06):068.[doi:10.13577/j.jnd.2018.0308]
[6]刘子心,刘章军.剪力墙结构振动台试验的概率密度演化分析[J].自然灾害学报,2018,27(04):137.[doi:10.13577/j.jnd.2018.0418]
 LIU Zixin,LIU Zhangjun.Probability density evolution analysis of a shear-wall structure by shaking table test[J].,2018,27(06):137.[doi:10.13577/j.jnd.2018.0418]
[7]沈吉荣,王志华,林文品,等.液化土体侧向扩展条件下群桩动力响应振动台模型试验[J].自然灾害学报,2018,27(06):027.[doi:10.13577/j.jnd.2018.0604]
 SHEN Jirong,WANG Zhihua,LIN Wenpin,et al.Shaking table test on the dynamic response of pile group under lateral spreading in liquefied ground[J].,2018,27(06):027.[doi:10.13577/j.jnd.2018.0604]
[8]王会娟,王平,于一帆,等.复杂土层结构黄土场地地震动反应特性[J].自然灾害学报,2018,27(06):075.[doi:10.13577/j.jnd.2018.0610]
 WANG Huijuan,WANG Ping,YU Yifan,et al.The effect of complex soil structure loess field on earthquake ground motion[J].,2018,27(06):075.[doi:10.13577/j.jnd.2018.0610]
[9]盛涛,肖畅,李水明,等.砂袋垫层减隔震与抗液化性能振动台试验研究[J].自然灾害学报,2019,28(01):009.[doi:10.13577/j.jnd.2019.0102]
 SHENG Tao,XIAO Chang,LI Shuiming,et al.Shaking table test on the horizontal seismic isolation and anti-liquefaction performance of sandbag layers[J].,2019,28(06):009.[doi:10.13577/j.jnd.2019.0102]

备注/Memo

备注/Memo:
收稿日期:2018-09-10;改回日期:2018-10-23。
基金项目:国家重点研发计划(2017YFC0504901);国家重点基础研究发展计划(973)项目(2011CB013605-5)
作者简介:周永毅(1993-),男,博士研究生,主要从事岩土抗震和多场耦合研究.E-mail:allen_zhou@my.swjtu.edu.cn
更新日期/Last Update: 1900-01-01