[1]李荣建,张瑾,江浩,等.饱和大厚度砂土地基中长短碎石桩屏蔽效应及其抗液化评价[J].自然灾害学报,2018,27(06):157-165.[doi:10.13577/j.jnd.2018.0620]
 LI Rongjian,ZHANG Jin,JIANG Hao,et al.Shielding effect and evaluation of liquefaction resistance of long-short gravel piles in saturated large-thick sand foundation[J].,2018,27(06):157-165.[doi:10.13577/j.jnd.2018.0620]
点击复制

饱和大厚度砂土地基中长短碎石桩屏蔽效应及其抗液化评价
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
27
期数:
2018年06期
页码:
157-165
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Shielding effect and evaluation of liquefaction resistance of long-short gravel piles in saturated large-thick sand foundation
作者:
李荣建1 张瑾1 江浩2 刘军定1 杨强13 李锦1
1. 西安理工大学 岩土工程研究所, 陕西 西安 710048;
2. 陕西省交通建设集团公司, 陕西 西安 710075;
3. 中国地质调查局水文地质环境地质调查中心, 河北 保定 071051
Author(s):
LI Rongjian1 ZHANG Jin1 JIANG Hao2 LIU Junding1 YANG Qiang13 LI Jin1
1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China;
2. Shaanxi Provincial Communication Construction Group, Xi’an 710075, China;
3. Center for Hydrogeology and Environmental Geology, CGS, Baoding 071051, China
关键词:
大厚度砂土饱和地基液化长短碎石桩弹塑性动力固结屏蔽效应
Keywords:
large-thick sandssaturated ground liquefactionlong-short gravel pileselastic-plastic dynamic consolidationshielding effect
分类号:
X43;X93;TU473;P315.93
DOI:
10.13577/j.jnd.2018.0620
摘要:
针对阿喀公路AK-3标段饱和大厚度砂土地基存在的地震液化问题,虽然工程中采用强夯法处理但抗液化检测表明并不能解决地基液化。碎石桩是一种有效的地基液化处理措施,但采用经济的长短碎石桩在处理饱和大厚度砂土地基中抗液化性能评价的相关研究较少。本研究提出了经济、合理的长短碎石桩加固大厚度砂土地基的方案,基于弹塑性动力固结理论和三维动力固结有限元程序FEMEPDYN,对比分析了天然地基和长短碎石桩加固地基的震陷、动孔压分布及超静孔压比。研究结果表明,采用长短碎石桩加固处理后的饱和大厚度砂土地基震陷降低了86.7%,动孔压降低了89.3%,超静孔压比降低了89.5%,路基两侧长碎石桩对地震波传播具有一定的屏蔽效应。长短碎石桩加固方案对砂土地基抗液化效果明显,长短碎石桩处理饱和大厚度砂土地基是一种经济有效的处理措施。
Abstract:
In order to solve the earthquake liquefaction problem in the saturated large-thick sand ground, the dynamic compaction was assumed in the AK-3 section of the Aka Highway, but the anti-liquefaction test showed that the threat of foundation liquefaction was still existed. Although the gravel pile is an effective treatment measure for anti-liquefaction, there are less corresponding researches on the evaluation of the anti-liquefaction performance about the long-short gravel piles in dealing with saturated large thickness sand foundation. In this study, an economical and reasonable long-short gravel pile to reinforce the large-thick sand foundation was proposed. Based on the elastic-plastic dynamic consolidation theory and the three-dimensional dynamic consolidation finite element program FEMEPDYN, the dynamic responses of the natural foundation and the reinforcement foundation were compared and analyzed, including seismic subsidence, dynamic pore pressure and excess pore pressure ratio. The results show that the seismic subsidence of saturated large-thick sands treated with long-short gravel piles is reduced by 86.7%, the value of dynamic pore pressure is decreased by 89.3%, and the ratio of excess pore pressure is reduced by 89.5%. Long gravel piles on both sides of the roadbed generate a certain shielding effect on the propagation of seismic waves. The anti-liquefaction effect is obvious on sand foundation by long-short gravel pile reinforcement scheme, which is a cost-effective treatment method for treating saturated thick sand foundation.

参考文献/References:

[1] 李鹏, 刘光磊, 宋二祥. 饱和地基中地下结构地震反应若干问题研究[J]. 地震工程学报, 2014, 36(4):843-849. LI Peng, LIU Guanglei, SONG Erxiang. Research on seismic response of underground structures in saturated foundation[J]. China Earthquake Engineering Journal, 2014, 36(4):843-849. (in Chinese)
[2] Poorooshasb H B, Meyerhof G G. Analysis of behavior of stone columns and lime columns[J]. Computers & Geotechnics, 1997, 20(1):47-70.
[3] 盛俭, 袁晓铭, 王禹萌, 等. 岩土震害影响因子权重研究——以砂土液化为例[J]. 自然灾害学报, 2012, 21(2):76-82. SHENG Jian, YUAN Xiaoming, WANG Yumeng, et al. Influence factor weights analysis of rock and soil earthquake damages:a case study fromsand liquefaction[J]. Journal of Natural Disasters, 2012, 21(2):76-82. (in Chinese)
[4] 张艳美, 张鸿儒. 碎石桩设计参数对复合地基抗液化性能的影响[J]. 岩土力学, 2008, 29(5):1320-1324. ZHANG Yanmei, ZHANG Hongru. Influence of stone columns design parameters on anti-liquefaction nature of composite foundation[J]. Rock and Soil Mechanics, 2008, 29(5):1320-1324. (in Chinese)
[5] 赵明华, 牛浩懿, 刘猛, 等. 柔性基础下碎石桩复合地基桩土应力比及沉降计算[J]. 岩土工程学报, 2017, 39(9):1549-1556. ZHAO Minghua, NIU Haoyi, LIU Meng,et al. Pile-soil stress ratio and settlement of composite ground with gravel piles in flexible foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(9):1549-1556. (in Chinese)
[6] 虞红海. 砂石桩非连续屏障隔振试验研究[J]. 水运工程, 2018(2):203-205. YU Honghai. Experimental research on vibration isolation by discontinuous barrier on sand-gravel pile[J]. Port & Waterway Engineering, 2018(2):203-205. (in Chinese)
[7] Joel G, Abdelmalek B. Improvement of soft soils using geogrid encased stone columns[J]. Eotextiles and Geomembranes, 2009, 27(3):167-175.
[8] Zhang L, Zhao M, Shi C, et al. Settlement calculation of composite foundation reinforced with stone columns[J]. International Journal Of Geomechanics, 2013, 13(3):248-256.
[9] 欧阳芳, 张建经, 付晓, 等. 包裹碎石桩承载特性试验研究[J]. 岩土力学, 2016, 37(7):1929-1936. OUYANG Fang, ZHANG Jianjing, FU Xiao, et al. Experimental analysis of bearing behavior of geosynthetic encased stone columns[J]. Rock and Soil Mechanics, 2016, 37(7):1929-1936. (in Chinese)
[10] 高加成, 李克安. 岸边填土地基的强度与稳定性加固[J]. 自然灾害学报, 2005, 14(2):119-125. GAO Jiacheng, LI Kean.Reinforcent of strength and stability of fill ground beside bank[J]. Journal of Natural Disasters, 2005, 14(2):119-125. (in Chinese)
[11] 杨继红, 董金玉, 黄志全, 等. 夯扩挤密碎石桩加固液化砂土地基的动力数值分析[J]. 岩土力学, 2014, 35(增刊):593-599. YANG Jihong, DONG Jinyu, HUANG Zhiquan, et al. Dynamic numerical analysis of liquefiable sand soil foundation reinforced by compacted gravel pile[J]. Rock and Soil Mechanics, 2014, 35(S2):593-599. (in Chinese)
[12] 杨生彬, 刘志伟, 李灿. 大厚度饱和砂土液化治理试验研究[J]. 岩土力学, 2009, 30(增刊2):430-433. YANG Shengbin, LIU Zhiwei, LI Can. Experimental research on control liquefaction of saturated sand with large-thickness[J]. Rock and Soil Mechanics, 2009, 30(S2):430-433. (in Chinese)
[13] 李继超, 桑有明. 振冲碎石桩在厚层饱和砂土液化地基中的应用[J]. 西部探矿工程, 2015(8):1-4. LI Jichao, SANG Youming. Application of vibro replacement stone column in liquefaction foundation of thick-layer saturated sand[J]. West-China Exploration Engineering, 2015(8):1-4. (in Chinese)
[14] Pastor M, Zienkiewicz O C. Leung K H. Simple model for transient soil loading in earthquake analysis:Ⅱ. Non-associative models for sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9(5):477-498.
[15] Li Q. Development of a New Finite Element Program for Liquefaction Analysis of Soilsand its Application to Seismic Behavior of Embankments on Sandy Ground[D]. PhD thesis. Gunma University. Japan, 1999.
[16] Pastor M, Zienkiewicz O C, Chan A H C, Generalized plasticity and the modeling of soil behavior[J]. International Journal For Numerical And Analytical Methods In Geomechanics, 1990, 14(3):151-190.
[17] Zienkiewicz O C, Chan A H C, Pastor M, et al. Computational geomechanics:with special reference to earthquake engineering[J]. Meccanica, 2000, 35(1):76.

备注/Memo

备注/Memo:
收稿日期:2018-09-30;改回日期:2018-10-25。
基金项目:国家自然科学基金项目(11072193);陕西省黄土力学与工程重点实验室项目(14JS064)
作者简介:李荣建(1969-),男,教授,博士,主要从事黄土力学、岩土工程抗震与边坡工程等方面的研究.E-mail:lirongjian@xaut.edu.cn
更新日期/Last Update: 1900-01-01