[1]祁磊,刘振纹,许浩,等.SPH与CEL方法在海底滑坡计算上的对比分析[J].自然灾害学报,2018,27(06):180-185.[doi:10.13577/j.jnd.2018.0623]
 QI Lei,LIU Zhenwen,XU Hao,et al.Comparative analysis of SPH and CEL methods used in submarine landslides[J].,2018,27(06):180-185.[doi:10.13577/j.jnd.2018.0623]
点击复制

SPH与CEL方法在海底滑坡计算上的对比分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
27
期数:
2018年06期
页码:
180-185
栏目:
出版日期:
2018-12-28

文章信息/Info

Title:
Comparative analysis of SPH and CEL methods used in submarine landslides
作者:
祁磊12 刘振纹1 许浩12 邓海峰1 李春12
1. 中国石油集团工程技术研究有限公司, 天津 300451;
2. 中国石油天然气集团海洋工程重点实验室, 天津 300451
Author(s):
QI Lei12 LIU Zhenwen1 XU Hao12 DENG Haifeng1 LI Chun12
1. CNPC Engineering Technology Research Company Limited, Tianjin 300451, China;
2. Key Laboratory of Offshore Engineering, CNPC, Tianjin 300451, China
关键词:
海底滑坡SPHCELababqus有限元
Keywords:
landslidesSPHCELabaqusFEM
分类号:
X43;X93;TU4
DOI:
10.13577/j.jnd.2018.0623
摘要:
研究表明,海底滑坡大大影响水下生产系统、海底管道和其他海洋结构的稳定性和安全性。即使倾斜角小于1°滑坡也可以发生。目前陆上滑坡的研究较多,但海底滑坡的研究很少。本文比较分析了CEL和SPH方法在海底滑坡上的应用。可以看出,采用SPH方法和CEL方法进行海底滑坡的计算都是可行的。CEL方法在某些方面的结果更为准确。当SPH和CEL的单元数量较少时,SPH的计算时间比CEL短,但是随着单元数量的增加,CEL方法计算速度比较快。如果需要拉格朗日结构的应力值,最好选择CEL方法。
Abstract:
Study shows that the submarine landslides have greatly affect the stability and security of subsea structures. Landslides can also take place even though the slope Angle is less than 1°,At present There are much more studies about onshore landslides, but the study of submarine landslides is very few.This paper discuss the CEL and SPH methods used in submarine landslides,It shows that both methods are feasible for simulation of submarine landslides. The results of CEL method is more accurate.When the elements of SPH and CEL is few, the SPH has shorter-time calculation than CEL’s, but with the increasing of elements, the CEL method has short calculation time. If structure’s stress is required,the CEL method is a better choice.

参考文献/References:

[1] Anders Elverhoi, Hedda Breien, Fabio V. Blasio. Submarine landslides and the importance of the initial sediment composition for run-out length and final deposit[J]. Ocean Dynamics, 2010, 60(4):1027-1046.
[2] Gingold R A, Monaghan J J. Smoothed Particle Hydrodynamics:Theory and Application to Non-Spherical Stars[J]. Royal Astronomical Society, 1977, 181(3):375-389.
[3] Johnson, Stryk, Beissel S. SPH for High Velocity Impact Calculations[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1):347-373.
[4] Libersky L D, Petschek A G. High Strain Lagrangian Hydrodynamics[J]. Journal of Computational Physics, 1993,109(1):67-75.
[5] Monaghan. Smoothed Particle Hydrodynamics[J]. Annual Review of Astronomy and Astrophysics, 1992, 30:543-574.
[6] Munjiza, K R F Andrews. NBS Contact Detection Algorithm for Bodies of Similar Size[J]. International Journal for Numerical Methods in Engineering, 1998, 43(1):131-149.
[7] Randles P W, Libersky L D. Recent Improvements in SPH Modeling of Hypervelocity Impact[J]. International Journal of Impact Engineering, 1997, 20(6):20-26.
[8] Jiang Tao Yi, Fook Hou Lee, Siang Huat Goh. Eulerian finite element analysis of excess pore pressure generated by spudcan installation into soft clay[J]. Computers and Geotechnics, 2012, 42:157-170.
[9] Pike K, Kenny S. Numerical Pipe/soil Interaction Modelling:Sensitivity Study and Extension to Ice Gouging[M]. OTC Arctic Technology Conference, Houston, Texas, USA, Offshore Technology Conference, 2012, 23731.
[10] Manoj Chopra, Dargush G F. Finite-Element Analysis of time-dependant large-deformations Problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1992, 16(2):101-130.

备注/Memo

备注/Memo:
收稿日期:2018-09-06;改回日期:2018-10-26。
作者简介:祁磊(1982-),男,高级工程师,主要从事海洋工程研究.E-mail:qilei01@cnpc.com.cn
更新日期/Last Update: 1900-01-01