[1]姚洪灿,谭平,周福霖.商用飞机撞击刚性墙的荷载时程分析方法[J].自然灾害学报,2019,28(02):049-59.[doi:10.13577/j.jnd.2019.0206]
 YAO Hongcan,TAN Ping,ZHOU Fulin.Load time history analysis method for commercial aircraft impact on rigid wall[J].,2019,28(02):049-59.[doi:10.13577/j.jnd.2019.0206]
点击复制

商用飞机撞击刚性墙的荷载时程分析方法
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年02期
页码:
049-59
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Load time history analysis method for commercial aircraft impact on rigid wall
作者:
姚洪灿12 谭平12 周福霖12
1. 广州大学 广东省地震工程与应用技术重点实验室, 广东 广州 510405;
2. 工程抗震减震与结构安全教育部重点实验室, 广东 广州 510405
Author(s):
YAO Hongcan12 TAN Ping12 ZHOU Fulin12
1. Guangdong Provincial Key Laboratory of Earthquake Engineering and Applied Technology, Guangzhou University, Guangzhou 510405, China;
2. Key Laboratory of Earthquake Resistance Earthquake Mitigation and Structural Safety Ministry of Education, Guangzhou 510405, China
关键词:
飞机撞击刚性墙数值模拟Riera法荷载时程分析
Keywords:
aircraft impactrigid wallnumerical simulationRiera methodload time history analysis
分类号:
TU352.1;X9
DOI:
10.13577/j.jnd.2019.0206
摘要:
针对商用飞机撞击刚性墙问题开展研究。首先,使用ANSYS/LS-DYNA软件建立了飞机的有限元模型,并对飞机撞击刚性墙的过程进行数值模拟。接着,采用Riera法对飞机撞击力进行理论计算,以验证数值模拟结果的准确性。最后,基于数值模拟结果对传统荷载时程分析方法进行改进,提出了可考虑不同撞击速度的荷载时程曲线调整方法以及加载区域确定方法,并对改进方法的有效性进行分析验证。结果表明:本文所提荷载时程分析改进方法简单有效,能够准确反映不同速度飞机撞击下刚性墙的最大位移响应,适用于重大工程结构的飞机撞击分析。
Abstract:
This paper focuses on the commercial aircraft impact on rigid wall. The finite element model for aircraft was first established and the numerical simulation of aircraft impact on rigid wall was carried out within the environment of ANSYS/LS-DYNA. The accuracy of the numerical simulation results was then verified by the Riera method. Finally, the traditional load time history analysis method was improved based on the numerical simulation results, in which a load time history curve adjustment method considering different impact speeds and a loading area determination method were proposed. Furthermore, the effectiveness of the improved method was proved. The results show that the proposed load time history analysis improved method is easy to implement and can accurately reflect the peak displacement response of rigid wall under the impact of aircraft at different speeds, which is suitable to aircraft impact analysis of major engineering structures.

参考文献/References:

[1] Lu X Z, Lin K Q, Cen S, et al. Comparing different fidelity models for the impact analysis of large commercial aircrafts on a containment building[J]. Engineering Failure Analysis, 2015, 57:254-269.
[2] 刘晶波,郑文凯. 大型商用飞机撞击核电站屏蔽厂房荷载研究[J]. 振动与冲击,2014, 33(6):97-101. LIU Jingbo, ZHENG Wenkai. Impact load analysis on a nuclear power plant impacted by a large commercial aircraft[J]. Journal of Vibration and Shock, 2014, 33(6):97-101. (in Chinese)
[3] Sadique M R, Iqbal M A, Bhargava P. Nuclear containment structure subjected to commercial and fighter aircraft crash[J]. Nuclear Engineering and Design, 2013, 260:30-46.
[4] 朱秀云,林皋,潘蓉,等. 基于荷载时程分析法的钢板混凝土结构墙的抗冲击性能敏感性分析[J]. 爆炸与冲击,2016, 36(5):670-679. ZHU Xiuyun, LIN Gao, PAN Rong, et al. Sensitivity analysis for impact resistance of steel plate concrete walls based on force vs. time-history analysis[J]. Explosion and Shock Waves, 2016, 36(5):670-679. (in Chinese)
[5] Almomani B, Lee S, Jang D, et al. Probabilistic risk assessment of aircraft impact on a spent nuclear fuel dry storage[J]. Nuclear Engineering and Design, 2017, 311:104-119.
[6] Kumar M, Whittaker A. Response of systems and components in a base-isolated nuclear power plant building impacted by a large commercial aircraft[J]. Journal of Structural Engineering, 2018, 144(9):04018153.
[7] Iqbal M A, Sadique M R, Bhargava P, et al. Damage assessment of nuclear containment against aircraft crash[J]. Nuclear Engineering and Design, 2014, 278:586-600.
[8] Iqbal M A, Rai S, Sadique M R, et al. Numerical simulation of aircraft crash on nuclear containment structure[J]. Nuclear Engineering and Design, 2012, 243:321-335.
[9] Frano R L, Forasassi G. Preliminary evaluation of aircraft impact on a near term nuclear power plant[J]. Nuclear Engineering and Design, 2011, 241(12):5245-5250.
[10] Almomani B, Lee S, Kang H G. Structural analysis of a metal spent-fuel storage cask in an aircraft crash for risk assessment[J]. Nuclear Engineering and Design, 2016, 308:60-72.
[11] Frano R L, Stefanini L. Investigation of the behaviour of a LILW superficial repository under aircraft impact[J]. Nuclear Engineering and Design, 2016, 300:552-562.
[12] Jiang H, Chorzepa M G. Aircraft impact analysis of nuclear safety-related concrete structures:A review[J]. Engineering Failure Analysis, 2014, 46:118-133.
[13] Rouzaud C, Gatuingt F, Hervé G, et al. Influence of the aircraft crash induced local nonlinearities on the overall dynamic response of a RC structure through a parametric study[J]. Nuclear Engineering and Design, 2016, 298:168-182.
[14] The Boeing Company. 737-83 view[EB/OL]. (2015)[2018]. http://www.boeing.com/commercial/airports/3_view.page
[15] D6-38A004737 MAX Airplane Characteristics for Airport Planning[S]. America:Boeing Commercial Airplanes, 2017.
[16] EASA.IM.A.120 Type-Certificate Data Sheet for BOEING 737[S]. Germany:European Aviation Safety Agency, 2018.
[17] EASA.E.115 Type-Certificate Data Sheet for LEAP-1B Series Engines[S]. Germany:European Aviation Safety Agency, 2018.
[18] 林丽,陆新征,韩鹏飞,等. 大型商用飞机撞击刚性墙及核电屏蔽厂房的撞击力分析[J]. 振动与冲击,2015, 34(9):158-163. LIN Li, LU Xinzheng, HAN Pengfei, et al. Analysis of impact force of large commercial aircraft on rigid wall and nuclear power plant containment[J]. Journal of Vibration and Shock, 2015, 34(9):158-163. (in Chinese)
[19] 张涛,方秦,吴昊,等. 飞机对核安全壳撞击破坏效应的数值模拟[J]. 解放军理工大学学报(自然科学版),2014, 15(4):335-340. ZHANG Tao, FANG Qin, WU Hao, et al. Numerical simulation on response and damage of nuclear containment under aircraft impact[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2014, 15(4):335-340. (in Chinese)
[20] Jones N. Structural Impact[M]. United Kingdom:Cambridge University Press, 1997.
[21] Bodner S R, Symonds P S. Experimental and theoretical investigation of the plastic deformation of cantilever beams subjected to impulsive loading[J]. Journal of Applied Mechanics, 1962, 29(4):719-728.
[22] Cowper G R, Symonds P S. Strain hardening and strain-rate effects in the impact loading of cantilever beams[R]. NR-064-406, America:Brown University, 1957.
[23] Liu J B, Han P F. Numerical analyses of a shield building subjected to a large commercial aircraft impact[J]. Shock and Vibration, 2018. https://doi.org/10.1155/2018/7854969.
[24] Riera J D. On the stress analysis of structures subjected to aircraft impact forces[J]. Nuclear Engineering and Design, 1968, 8(4):415-426.
[25] Sugano能T, Tsubota H, Kasai Y, et al. Full-scale aircraft impact test for evaluation of impact force[J]. Nuclear Engineering and Design, 1993, 140(3):373-385.
[26] NEI07-13[Revision 8P] Methodology for Performing Aircraft Impact Assessments for New Plant Designs[S]. America:The Nuclear Energy Institute, 2011.
[27] Jackson K E, FuchsY T. Comparison of ALE and SPH simulations of vertical drop tests of a composite fuselage section into water[C]//10th International LS-DYNA Users Conference, 2008.
[28] 任根茂,吴昊,方秦,等. 普通混凝土HJC本构模型参数确定[J]. 振动与冲击,2016, 35(18):9-16. REN Genmao, WU Hao, FANG Qin, et al. Determinations of HJC constitutive model parameters for normal strength concrete[J]. Journal of Vibration and Shock, 2016, 35(18):9-16. (in Chinese)
[29] 陈建林,李旭东,刘凯欣. 素混凝土本构模型参数的实验研究[J]. 北京大学学报(自然科学版),2008, 44(5):689-694. CHEN Jianlin, LI Xudong, LIU Kaixin. Experimental research on parameters of constitutive model for a cement mortar[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2008, 44(5):689-694. (in Chinese)
[30] Holmquist T J, Johnson G R, Cook W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//The 14th International Symposium on Ballistic, 1993.
[31] Lee K, Han S E, Hong J W. Analysis of impact of large commercial aircraft on a prestressed containment building[J]. Nuclear Engineering and Design, 2013, 265:431-449.
[32] Zhang T, Wu H, Fang Q, et al. Numerical simulations of nuclear power plant containment subjected to aircraft impact[J]. Nuclear Engineering and Design, 2017, 320:207-221.
[33] Lin F, Tang H. Nuclear containment structure subjected to commercial aircraft crash and subsequent vibrations and fire[J]. Nuclear Engineering and Design, 2017, 322:68-80.

备注/Memo

备注/Memo:
收稿日期:2018-11-02;改回日期:2019-01-07。
基金项目:广州市属高校"羊城学者"首席科学家项目(1201541630);广东省教育厅创新团队项目(2016KCXTD016)
作者简介:姚洪灿(1994-),男,硕士研究生,主要从事结构隔震与减震控制研究.E-mail:yaohongcan@e.gzhu.edu.cn
通讯作者:谭平(1973-),男,研究员,博士,主要从事结构隔震与减震控制研究.E-mail:ptan@gzhu.edu.cn
更新日期/Last Update: 1900-01-01