[1]李秀茹,郭恩栋,薛帅,等.富水破碎带岩溶隧道突水模型试验研究[J].自然灾害学报,2019,28(02):101-108.[doi:10.13577/j.jnd.2019.0211]
 LI Xiuru,GUO Endong,XUE Shuai,et al.Model test on water burst of Karst tunnel in water-rich fracture zone[J].,2019,28(02):101-108.[doi:10.13577/j.jnd.2019.0211]
点击复制

富水破碎带岩溶隧道突水模型试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年02期
页码:
101-108
栏目:
出版日期:
2019-04-28

文章信息/Info

Title:
Model test on water burst of Karst tunnel in water-rich fracture zone
作者:
李秀茹1 郭恩栋1 薛帅2 廖旭3
1. 中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080;
2. 帝国理工学院, 英国 伦敦SW7 2AZ;
3. 辽宁省地震局, 辽宁 沈阳 110034
Author(s):
LI Xiuru1 GUO Endong1 XUE Shuai2 LIAO Xu3
1. Institute of Engineering Mechanics, China Earthquake Administration;Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Administration, Harbin 150080, China;
2. Imperial College London, London SW7 2AZ, England;
3. Liaoning Earthquake Administration, Shenyang 110034, China
关键词:
富水破碎带敏感性模型试验突水机理
Keywords:
water-rich fracture zonesensitivitymodel testwater burst mechanism
分类号:
P641.2;X9;P618.13
DOI:
10.13577/j.jnd.2019.0211
摘要:
为研究富水破碎带岩溶隧道突水特点以及水力学参数对水压的敏感性。利用自主研发的突水模型试验系统,开展了一系列不同水压下的室内突水模型试验,分析讨论了富水破碎带突水过程的突水速率、渗透率以及颗粒质量流速的变化规律,进而揭示突水致灾机理。研究表明:突水过程一般可分为3个阶段,突水速率与渗透率在这3个阶段中的变化规律具有同步性;突水过程中前2个阶段所需时间和最大突水速率与水压大小密切相关;颗粒质量速率与渗透率对水压大小极为敏感,水压越高,颗粒质量流速增长越快,达到最大质量流速所用时间越少,同时,在稳定阶段的破碎带渗透率亦会随着水压的增大而增大;富水破碎带岩溶隧道突水是一个复杂的非线性动力过程,它是由外部因素和内部因素共同作用而导致的。
Abstract:
To study the sensitivity of hydraulic parameters and water burst characteristics of Karst tunnel in water-rich fracture zone. A series of model experiments of water inrush under different water pressure were conducted in the self-developed water inrush model test system, the change rule of water-inrush rate, permeability, granule mass velocity during the process of water burst in water-rich fracture zone were analyzed, and then the mechanism of water inrush was also clarified. Results show:the process of water inrush can be divided into three stages, and the change rule of water-inrush rate and permeability in these three stages is synchronicity; the time required for the first and second stages during the process of water inrush and the maximum water-inrush velocity are closely related to the water pressure; granule mass velocity and permeability are extremely sensitive to water pressure, the higher of the water pressure, the faster growth of the granule mass velocity and the less time it takes to reach the maximum granule mass velocity, meanwhile, the permeability of fracture zone in stable stage will increase with the increase of water pressure. It is a complex nonlinear dynamic process of water burst of Karst tunnel in water-rich fracture zone, which is caused by the combination of external factors and internal factors.

参考文献/References:

[1] 纪晓. 富水破碎带突水突泥的超前地质预报和注浆防治技术在羊仓岩Ⅱ号隧道的应用研究[D]. 济南:山东大学, 2017.JI Xiao. The Application of Advanced Geological Predication and Prevention Technology with Grouting to Water rich Fractured Zone-mud Water Inrush in Yangcangyan No.Ⅱ Tunnel[D]. Jinan:Shandong University, 2017. (in Chinese)
[2] 潘东东, 李术才, 许振浩. 岩溶隧道承压隐伏溶洞突水模型试验与数值分析[J]. 岩土工程学报, 2018, 1(21):1-9.PAN Dongdong, LI Shucai, XU Zhenhao. A model test and numerical analysis for water inrush caused by karst caves filled with confined water in tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 1(21):1-9.(in Chinese)
[3] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10):1945-1956。QIAN Qihu. Challenges faced by underground projects construction safety and counter measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10):1945-1956. (in Chinese)
[4] 李利平. 高风险岩溶隧道突水灾变演化机制及其应用研究[D]. 济南:山东大学, 2009.LI Liping. Study on Catastrophe Evolution Mechanism of Karst Water Inrush and Its Engineering Application of High Risk Karst Tunnel[D]. Jinan:Shandong University, 2009. (in Chinese)
[5] 黄明利, 王飞, 路威, 等. 隧道开挖诱发富水有压溶洞破裂突水过程数值模拟[J]. 中国工程科学, 2009, 11(12):93-96.HUANG Mingli, WANG Fei, LU Wei, et al. Numerical study on the process of water inrush in Karst caves with hydraulic pressure caused by tunnel excavation[J]. Engineering Sciences, 2009, 11(12):93-96. (in Chinese)
[6] 周辉, 汤艳春, 胡大伟, 等. 盐岩裂隙渗流-溶解耦合模型及试验研究[J]. 岩石力学与工程学报, 2006, 25(5):946-950.ZHOU Hui, TANG Yanchun, HU Dawei, et al. Study on coupled penetrating dissolving model and experiment for salt rock cracks[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5):946-950. (in Chinese)
[7] 李术才, 李利平, 李树忱, 等. 地下工程突涌水物理模拟试验系统的研制及应用[J].采矿与安全工程学报, 2010, 27(3):299-304.LI Shucai, LI Liping, LI Shuchen, et al. Development and application of similar physical model test system for water inrush of underground engineering[J]. Journal of Mining and Safety Engineering, 2010, 27(3):299-304. (in Chinese)
[8] 李术才, 周毅, 李利平, 等. 地下工程流-固耦合模型试验新型相似材料的研制及应用[J]. 岩石力学与工程学报, 2012, 31(6):1128-1137.LI Shucai, ZHOU Yi, LI Liping, et al. Research of a new similar material for underground engineering fluid-solid coupling model test and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6):1128-1137. (in Chinese)
[9] 舒磊, 何本国, 龚伦, 等. 大断面深埋隧道穿越富水断层灾变研究[J]. 自然灾害学报, 2013, 22(4):193-200.SHU Lei, ZHAO Benguo, GONG Lun, et al. Study on disaster of large cross-section deep tunnel passing water-rich fault[J]. Journal of Natural Disasters, 2013, 22(4):193-200. (in Chinese)
[10] Wang Y, Hu H X, Lu G J, et al. Effects of specimen height on the acoustic emission rate value ‘a’ for Cement Mortar[J]. Journal of Wuhan University of Technology(Materials Science), 2016, 31(4):843-850.
[11] 何秉顺, 丁留谦, 刘昌军. 面板砂砾石坝异常渗流及破坏机制探讨[J]. 自然灾害学报, 2009, 18(6):141-145.HE Bingshun, DING Liuqian, LIU Changjun. Research on abnormal seepage and failure mechanism of faced rockfill dam[J]. Journal of Natural Disasters, 2009, 18(6):141-145. (in Chinese)
[12] 杨天鸿, 师文豪, 李顺才, 等. 破碎岩体非线性渗流突水机理研究现状及发展趋势[J]. 煤炭学报, 2016, 41(7):1598-1609.YANG Tianhong, SHI Wenhao, LI Shuncai, et al. State of the art and trends of water-inrush mechanism of nonlinear flow in fractured rock mass[J]. Journal of China Coal Society, 2016, 41(7):1598-1609.
[13] Bai H, Ma D, Chen Z. Mechanical behavior of groundwater seepage in karst collapse pillars[J]. Engineering Geology, 2013, 164(18):101-106.
[14] Wang W X, Sui W H, Faybishenko B, et al. Permeability variations within mining-induced fractured rock mass and its influence on groundwater inrush[J]. Environmental Earth Sciences, 2016, 75(4):1-15.
[15] Ma D, Rezania M, Yu H S, et al. Variations of hydraulic properties of granular sandstones during water inrush:effect of small particle migration[J]. Engineering Geology, 2016, 217(2):61-74.

相似文献/References:

[1]谢贤健,韦方强,兰代萍.小江流域滑坡对土地利用的敏感性[J].自然灾害学报,2011,20(01):115.
 XIE Xian-jian,WEI Fang-qiang,LAN Dai-ping.Sensitivity of landslide to land use in Xiaojiang River Basin[J].,2011,20(02):115.
[2]马玉平,孙琳丽,俄有浩.黄淮海夏玉米不同发育阶段对旱涝灾害的敏感性[J].自然灾害学报,2015,24(06):090.[doi:10.13577/j.jnd.2015.0611]
 MA Yuping,SUN Linli,E Youhao.Sensitivity of summer maize in different developmental stages in Huang-Huai-Hai plain to drought and waterlogging[J].,2015,24(02):090.[doi:10.13577/j.jnd.2015.0611]
[3]钟锋,粟晓玲,宋悦.泾惠渠灌区干旱指数的变化趋势及其敏感性分析[J].自然灾害学报,2015,24(06):097.[doi:10.13577/j.jnd.2015.0612]
 ZHONG Feng,SU Xiaoling,SONG Yue.Trend and sensitivity of aridity index in Jinghuiqu irrigation area[J].,2015,24(02):097.[doi:10.13577/j.jnd.2015.0612]
[4]蒋德明,李益敏,鲍华姝.泸水县滑坡孕灾环境因素敏感性研究[J].自然灾害学报,2016,25(04):109.[doi:10.13577/j.jnd.2016.0414]
 JIANG Deming,LI Yimin,BAO Huashu.Study on sensitivity in disaster-pregnant environmental factors of landslide in Lushui County[J].,2016,25(02):109.[doi:10.13577/j.jnd.2016.0414]

备注/Memo

备注/Memo:
收稿日期:2018-01-27;改回日期:2018-03-19。
基金项目:中国地震局工程力学研究所基本科研业务费专项(2013B15);地震行业科研专项经费项目(201508023);中国地震局创新团队发展计划项目
作者简介:李秀茹(1978-),女,博士研究生,主要从事生命线工程抗震研究.E-mail:beauty care@hotmail.com
通讯作者:郭恩栋(1966-),男,研究员,主要从事生命线工程抗震研究.E-mail:iemged@263.net
更新日期/Last Update: 1900-01-01