[1]梁冠亭,刘敏,李明豪.大跨度拱桥抗震性能分析与减震控制研究[J].自然灾害学报,2019,28(03):079-86.[doi:10.13577/j.jnd.2019.0309]
 LIANG Guanting,LIU Min,LI Minghao.Seismic performance analysis and vibration control of arch bridge with long-span[J].,2019,28(03):079-86.[doi:10.13577/j.jnd.2019.0309]
点击复制

大跨度拱桥抗震性能分析与减震控制研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年03期
页码:
079-86
栏目:
出版日期:
2019-06-28

文章信息/Info

Title:
Seismic performance analysis and vibration control of arch bridge with long-span
作者:
梁冠亭12 刘敏3 李明豪3
1. 武汉市市政建设集团有限公司, 湖北 武汉 430056;
2. 武汉大学 土木建筑工程学院, 湖北 武汉 430072;
3. 哈尔滨工业大学 土木工程学院, 黑龙江 哈尔滨 150090
Author(s):
LIANG Guanting12 LIU Min3 LI Minghao3
1. Wuhan Municipal Construction Group Co., Ltd., Wuhan 430056, China;
2. School of Civil Engineering, Wuhan University, Wuhan 430072, China;
3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
关键词:
大跨度拱桥有限元非线性粘滞阻尼器抗震性能振动控制
Keywords:
arch bridge with super-spanfinite elementnonlinear viscous damperseismic performancevibration control
分类号:
T393.3;X9
DOI:
10.13577/j.jnd.2019.0309
摘要:
论文运用通用有限元软件ANSYS对香溪长江大桥-大跨度拱桥进行了数值模拟。以COMBIN37单元模拟非线性粘滞阻尼器,分析了该阻尼器布置于拱肋横梁与主梁处(方案1)及安装在立柱与主梁之间(方案2)两种不同位置时对拱桥的地震响应控制效果。分析结果表明:针对顺桥向位移反应,方案1的控制效果明显优于方案2;两种阻尼器控制方案均对桥面加速度有放大作用,且方案1的放大效果要比方案2大。两种阻尼器控制方案对拱顶及拱脚轴力均有较好的控制效果,且方案1的控制效果优于方案2;两种阻尼器控制方案对拱桥面内弯矩的控制效果,方案2的控制效果优于方案1。上述研究结果为大跨度拱桥振动控制分析及工程应用具有重要的指导意义。
Abstract:
In the present paper, numerical analysis of Xiangxi Yangtze River Arch Bridge with long-span is carried out by using the commercial finite element software ANSYS. Nonlinear viscous damper modeled with COMBIN37 element was simulated. The control efficacy of the arch bridge installed with nonlinear viscous dampers was analyzed when the viscous dampers were arranged on the site of the rib beam and the main beam (Scheme 1), and between the column and the main beam (Scheme 2), respectively. The numerical analysis results show that the control efficacy of scheme 1 is obviously better than that of scheme 2 on the mitigation of the displacement response of the bridge deck. However, both of two schemes could enlarge the acceleration response of the bridge deck. Moreover, the negative effect of scheme 1 is greater than that of scheme 2. In addition, both of two schemes could decrease the force of the vault and spring of main arch, and the scheme 2 have the better control efficacy on the force of the vault and spring of main arch. For the in-plane bending moment, the control efficacy of scheme 2 is superior to that of scheme 1. These investigations provide important guidance for the vibration control analysis and engineering application of long-span arch bridges.

参考文献/References:

[1] M. D. Symans, S. WKelly. Seismic protection of bridge structure using hybrid isolation system[C]//6thU. S. National Conference on Earthquake Engineering, 1998.
[2] 李杰. 600m特大跨径钢筋混凝土拱桥抗震性能研究[D]. 重庆交通大学, 2015. LI Jie. Study on Seismic Response of 600m Super-Span Reinforced Concrete Arch Bridge[D]. Chongqing Jiaotong University,2015.
[3] K. Maebayashi, et al. Hybrid mass damper system for response control of building[C]//Earthquake Engineering, Tenth World Conference, 1992, Balkema, Roterdam.
[4] 李远哲. 刚架拱桥抗震性能初步研究[D]. 重庆交通大学, 2011. LI Yuanzhe. Preliminary Study on Seismic Response of Rigid-Frame Arch Bridge[D]. Chongqing Jiaotong University,2011.
[5] Gina. J. Lee-Glauser et al. Integrated passive/active vibration absorber for multistory buildings[J]. Journal of Structural Engineering, 1997, 123(4):499-504.
[6] 李正英. 大跨度拱桥地震反应特性及减震控制研究[D]. 重庆大学, 2008. LI Zhengying. Research on Earthquake Response Characteristic and Seismic Control of Long Span Arch Bridges[D]. Chongqing University, 2008.
[7] 易达. 大跨度钢桁架拱桥地震反应分析和索拱连接详细应力分析和结构优化[D]. 西南交通大学, 2016. YI Da. Analyses of Seismic Response and Cable-Arch Connection Detailed Stress of Large Span Steel Truss Arch Bridge[D].Southwest Jiaotong University,2016.
[8] 中国铁路桥梁史编辑委员会. 中国铁道桥梁史[M]. 中国铁道出版社, 1987. China Railway Bridge History Editorial Committee. History of Railway Bridges in China[M]. China Railway Press,1987.
[9] 云迪. 大跨中承式钢管混凝土拱桥静力及抗震性能[D]. 哈尔滨工业大学, 2007. YUN Di. Static and aseismic behavior of large span half-through concrete-filled steel tubular arch bridges[D].Harbin Institute of Technology,2007.
[10] 丁文胜. 下承式刚架系杆拱桥的抗震设计方法及试验研究[D]. 东南大学, 2006. DING Wensheng. Seismic Design Method and Experimental Study on Rigid-Frame Through Tied-Arch Bridges[D]. Southeast China University,2006.
[11] 李勇. 深圳北站大桥动力特性分析[A].中国钢结构协会钢-混凝土组合结构协会第七次年会论文集[C]. 中国钢结构协会钢-混凝土组合结构分会, 1999:4. LI Yong. Analysis of dynamic character Shenzhen Beizhan bridge[A]. Proceeding of 7th Annual Meeting of China Association of Steel Structure-Composite Structures[C]. China Association of Steel Structure-Composite Structures,1999:4.
[12] Ronald S. Harichandran, Weijun Wang. Response of simple beam to spatially varying earthquake excitation[J]. Journal of Engineering Mechanics, 1988, 114(9):1526-1541.
[13] M. Berrah and E. Kausel. Spectrum Analysis of A Beam Under Non-uniform Seismic Motion[C]//Proc. Second European Conf. on Structural Dynamics. Trondheim, Norway, 1 Balkena, Rotterdam, 27-32. 1993.
[14] A Rutenberg and A. Heidebrecht. Approximate Spectral Multiple Support Seismic Analysis:Traveling Wave Approach[C]//Proc. Instn. Civil Engineering. Part 2. 85. 223-236. 1988.
[15] H. Hao. Arch response to correlated multiple excitations[J]. Earthquake Engineering and Structural Dynamics, 1993, 22, 389-404.
[16] 王天利,李青宁. 城市立交中分叉曲线桥梁地震响应研究[J]. 自然灾害学报, 2018, 27(3):179-187. WANG Tianli, LI Qingning. Research on earthquake response of fork curved bridge in the city interchange[J]. Journal of Natural Disasters, 2018, 27(3):179-187.
[17] 曾攀. 减震和被动控制装置对桥梁抗震性能的影响研究[D]. 北京交通大学, 2001. ZENG Fan. Study on Effect of Seismic Mitigation and Passive Control Devices on Seismic Performance of Bridges[D]. Beijing Jiaotong University,2001.
[18] 蒋建军,李建中,范立础. 桥梁板式橡胶支座与粘滞阻尼器组合使用的减震性能研究[J]. 公路交通科技, 2005,(8):44-48. JIANG Jianjun, LI Jianzhong, FAN Lichu. Study on aseismic performance of combination of laminated rubber bearing and viscous damper for bridge[J].Journal of Highway and Transportation Research and Development, 2005,(8):44-48.
[19] 谢文,孙钰苗,孙利民.超高A型桥塔横向地震破坏模式及其控制策略[J].自然灾害学报,2018,27(1):127-136. XIE Wen, SUN Yumiao, SUN Limin. Damage control strategy with additional energy dissipation components and seismic failure modes for super tall A-shape tower under transverse earthquake[J]. Journal of Natural Disasters, 2018,27(1):127-136.
[20] 尹丽丹,马宁.黏弹性复合防屈曲支撑钢框架结构抗震抗风性能分析[J].自然灾害学报, 2019, 28(1):16-23. YIN Lidan,MA Ning.Analysis of seismic and wind-resistant performance of viscous-elastic buckling-restrained braced frame[J]. Journal of Natural Disasters, 2019, 28(1):16-23.
[21] 李建中,袁万城. 斜拉桥减震、耗能体系非线性纵向地震反应分析[J]. 中国公路学报, 1998, 11(1):73-78. LI Jianzhong, YUAN Wancheng. Nonlinear longitudinal seismic response analysis of cable-stayed bridge systems with energy dissipation[J].China Journal of Highway and Transport, 1998, 11(1):73-78.
[22] 张耀宏,顾金钧. 使用粘性阻尼器的桥梁抗震设计——利用粘性阻尼器降低地震力[J]. 国外桥梁, 1997, (4):32-35. ZHANG Yaohong, GU Jinjun. Seismic design of bridges using viscous dampers-Reducing seismic force by using viscous dampers[J].Foreign Bridges,1997, (4):32-35.
[23] 田智元. 劲性骨架钢管混凝土拱桥的抗震性能分析与减震控制研究[D]. 兰州交通大学, 2014. TIAN Zhiyuan. Analysis on Seismic Behavior and Exploration on Seismic Control of Stiff Skeleton Concrete Filled Steel Tube Arch Bridges[D].Lanzhou Jiaotong University,2014.
[24] 刘怀林,兰海燕. Ansys在大跨径桥梁阻尼器选型中的应用[J]. 公路交通技术, 2011, (6):44-48. LIU Huailin, LAN Haiyan. Application of Ansys in type selection of dampers for large-span bridges[J].Technology of Highway and Transport, 2011, (6):44-48.

相似文献/References:

[1]李文刚,金玉姬,高锐.水平地震激励下储罐液体晃动分析[J].自然灾害学报,2007,16(02):138.
 LI Wen-gang,JIN Yu-ji,GAO Rui.Sloshing analysis of fluid in storage tank under lateral seismic excitations[J].,2007,16(03):138.
[2]剡建建,熊云,李宏伟,等.基于ANSYS的球形库房抗风和抗震能力分析[J].自然灾害学报,2014,23(01):238.[doi:10.13577/j.jnd.2014.0132]
 YAN Jianjian,XIONG Yun,LI Hongwei,et al.ANSYS-based wind-resistance and aseismic analysis of hemispheric depot[J].,2014,23(03):238.[doi:10.13577/j.jnd.2014.0132]
[3]熊学玉,蔡跃,黄鼎业.火灾下预应力混凝土结构极限承载力计算方法[J].自然灾害学报,2005,14(02):147.
 XIONG Xue-yu,CAI Yue,HUANG Ding-ye.Calculation of ultimate bearing capacity for prestressed concrete structure subjected to fire[J].,2005,14(03):147.
[4]毕小勇,闫天俊,鲁杰.Midas-GTS(SRM)在边坡二维稳定性分析中的运用[J].自然灾害学报,2015,24(01):170.[doi:10.13577/j.jnd.2015.0122]
 BI Xiaoyong,YAN Tianjun,LU Jie.Application of Midas-GTS(SRM) to 2D stability analysis of slope[J].,2015,24(03):170.[doi:10.13577/j.jnd.2015.0122]
[5]彭勇波,艾晓秋,承颖瑶.风致树木倒伏研究进展[J].自然灾害学报,2016,25(05):167.[doi:10.13577/j.jnd.2016.0520]
 PENG Yongbo,AI Xiaoqiu,CHENG Yingyao.Advances in research on wind-induced trees lodging[J].,2016,25(03):167.[doi:10.13577/j.jnd.2016.0520]
[6]王旭,魏延建,孙得璋,等.限位墩对不等高桥墩连续梁桥地震响应的影响[J].自然灾害学报,2017,26(03):071.[doi:10.13577/j.jnd.2017.0309]
 WANG Xu,WEI Yanjian,SUN Dezhang,et al.Influence of restrainer pier on the seismic response of continuous girder bridge with different heights of pier[J].,2017,26(03):071.[doi:10.13577/j.jnd.2017.0309]
[7]艾晓秋,彭勇波,承颖瑶.城市行道树动力学特性与风致破坏分析[J].自然灾害学报,2018,27(01):027.[doi:10.13577/j.jnd.2018.0104]
 AI Xiaoqiu,PENG Yongbo,CHENG Yingyao.Wind-induced failure and dynamical behaviors of urban trees[J].,2018,27(03):027.[doi:10.13577/j.jnd.2018.0104]
[8]王向英,赵诗扬,张洋,等.引入SPH方法的储液罐地震反应分析[J].自然灾害学报,2018,27(03):103.[doi:10.13577/j.jnd.2018.0312]
 WANG Xiangying,ZHAO Shiyang,ZHANG Yang,et al.Study on seismic response of liquid storage tank with SPH method[J].,2018,27(03):103.[doi:10.13577/j.jnd.2018.0312]
[9]祁磊,刘振纹,许浩,等.SPH与CEL方法在海底滑坡计算上的对比分析[J].自然灾害学报,2018,27(06):180.[doi:10.13577/j.jnd.2018.0623]
 QI Lei,LIU Zhenwen,XU Hao,et al.Comparative analysis of SPH and CEL methods used in submarine landslides[J].,2018,27(03):180.[doi:10.13577/j.jnd.2018.0623]

备注/Memo

备注/Memo:
收稿日期:2019-03-20;改回日期:2019-04-20。
基金项目:国家自然科学基金面上项目(51678198);十三五重点研发计划(2016YFC0701102);湖北省交通运输科技项目计划(2016600207)
作者简介:梁冠亭(1985-),男,博士(后),高级工程师,主要从事基础工程与边坡支挡结构研究.E-mail:lgtwhsz@126.com
通讯作者:刘敏(1977-),女,副教授,博士,主要从事结构振动控制研究.E-mail:liumin@hit.edu.cn
更新日期/Last Update: 1900-01-01