[1]周利剑,吴育建,孙建刚,等.长周期地震动作用下大型立式储罐晃动波高问题研究[J].自然灾害学报,2019,28(03):087-95.[doi:10.13577/j.jnd.2019.0310]
 ZHOU Lijian,WU Yujian,SUN Jiangang,et al.Study on sloshing wave height of large vertical storage tanks under long period earthquake[J].,2019,28(03):087-95.[doi:10.13577/j.jnd.2019.0310]
点击复制

长周期地震动作用下大型立式储罐晃动波高问题研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年03期
页码:
087-95
栏目:
出版日期:
2019-06-28

文章信息/Info

Title:
Study on sloshing wave height of large vertical storage tanks under long period earthquake
作者:
周利剑1 吴育建1 孙建刚2 崔利富2 吕远3 罗东雨4
1. 东北石油大学 土木建筑工程学院, 黑龙江 大庆 163000;
2. 大连民族大学 土木工程学院, 辽宁 大连 116650;
3. 大连海事大学 道路与桥梁研究所, 辽宁 大连 116026;
4. 大连理工大学 建设工程学部水利工程学院, 辽宁 大连 116024
Author(s):
ZHOU Lijian1 WU Yujian1 SUN Jiangang2 CUI Lifu2 LV Yuan3 LUO Dongyu4
1. School of Civil Engineering and Architecture, Northeast Petroleum University, Daqing 163000, China;
2. School of Civil Engineering, Dalian Nationalities University, Dalian 116650, China;
3. Institute of Roads and Bridges, Dalian Maritime University, Dalian 116026, China;
4. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
关键词:
大型立式储罐安全波高长周期规范试验振型
Keywords:
large vertical storage tanksafetywave heightlong periodstandardtestvibration mode
分类号:
TU352.11;X9
DOI:
10.13577/j.jnd.2019.0310
摘要:
大型立式储罐储液受地震作用晃动波高问题是储罐抗震设计的重要指标,该指标的设计是否合理直接关系到储罐在地震作用下的安全性能,特别大型储罐在长周期地震动激励下会产生大幅晃动,对储罐本身和周围环境构成重大威胁。因此,针对长周期地震动作用下立式储罐的晃动效应,本文进行了各国规范之间的对比、振动台试验、数值仿真的研究。结果表明:中、美、欧、日储罐抗震规范在适用范围、场地分类、设防基准和反应谱等方面存在差异,但规范波高计算值相差不大,满足了对中短周期地震动激励波高的设防要求,对长周期地震动激励波高设防明显不足;储罐在含有丰富长周期波形的地震波作用下,产生的试验波高较大,且随地震动峰值加速度的增加呈一定的线性增加;利用傅里叶谱卓越周期作为频谱特性参数来拟合波高具有可行性,并与激励波高由一定趋势的函数关系;选用傅里叶谱低频幅值占比率λ进行长周期地震波界定,并运用多阶振型叠加SRSS方法进行规范波高公式修正,计算结果对长周期地震动激励波高有较高的设防。
Abstract:
The sloshing wave height of large vertical storage tank under earthquake is an important parameter in seismic design of storage tank,which is directly related to the safety of storage tank under earthquake.Especially,large-scale storage tanks will generate large-scale sloshing under long-period earthquake excitation, which poses a major threat to the storage tank itself and the surrounding environment.Therefore, in view of the sloshing effect of vertical storage tanks under long-period seismic excitation, this paper studies the comparison between national norms, shaking table test and numerical simulation of this problem. The results show that there are differences in scope of application, site classification, fortification datum and response spectrum between China, the United States, Europe and Japan, but the calculated values of wave heights of the standard are similarity, which satisfies the fortification requirements of excitation wave heights of medium and short period ground motions, and the fortification of long-period seismic excitation wave heights is obviously insufficient.Under the action of seismic waves with abundant long-period waveforms, the experimental wave height is larger and increases linearly with the increase of peak acceleration of ground motion. It is feasible to use the Fourier spectrum excellent period as the spectral characteristic parameter to fit the wave height, and it is related to the excitation wave height by a certain trend. The Fourier spectrum low-frequency amplitude ratio λ is used to define the long-period seismic wave, and the multi-order mode superposition SRSS method is used to correct the wave height formula. The calculation results have a high degree of fortification of long-period ground motion excitation wave height.

参考文献/References:

[1] 孙建刚.立式储罐动响应若干问题研究[D].哈尔滨:哈尔滨工程大学,2005. SUN Jiangang. Study on Several Problems of Vertical Tank Dynamic Response[D]. Harbin:Harbin Engineering University, 2005.
[2] 孙建刚.大型立式储罐隔震——理论、方法及实验[M].北京:科学出版社,2009. SUN Jiangang. Isolation of Large Vertical Storage Tanks:Theory, Methods and Experiments[M]. Beijing:Science Press, 2009.
[3] 崔利富. 大型LNG储罐基础隔震与晃动控制研究[D]. 大连:大连海事大学,2012. CUI Lifu.Study on Base Isolation and Sloshing Control of Large LNG Storage Tanks[D].Dalian:Dalian Maritime University, 2012.
[4] 徐智星.长周期地震动参数及频谱特征[J].福州大学学报, 2013, 41(4):760-764. XU Zhixing. Long period ground motion parameters and spectral characteristics[J]. Journal of Fuzhou University, 2013, 41(4):760-764.
[5] 李雪红.长周期地震动的特性分析及界定方法研究[J].振动工程学报, 2014,27(5):685-692. LI Xuehong.Study on the characteristic analysis and definition method of long period earthquake[J].Journal of Vibration Engineering, 2014,27(5):685-692.
[6] 扬迪雄.近断层脉冲型地震动作用下隔震结构地震动反应分析[J].地震工程与工程振动, 2005, 25(2):119-124. YANG Dixiong.Seismic response analysis of isolated structures subjected to near-fault impulsive ground motions[J].Earthquake Engineering and Engineering Dynamics, 2005, 25(2):119-124.
[7] housner.G.W.:Dynamic pressure on accelerated fluid containers[J].Bull.Seism.Soc.Am.,1957,47(1):15-35.
[8] GB 50341-2014立式圆筒形钢制焊接油罐设计规范[S]. 北京:中国计划出版社,2014. GB 50341-2014 Design Specification for Vertical Cylindrical Steel Welded Oil Tanks[S]. Beijing:China Planning Publishing House, 2014.
[9] GB50761-2012石油化工钢制设备抗震设计规范[S]. 北京:中国计划出版社,2012. GB50761-2012 Code for Seismic Design of Petrochemical Steel Equipment[S]. Beijing:China planning publishing house, 2012.
[10] American Petroleum Institute. API 650-2013 Welded Tanks for Oil Storage[S]. Washington D C:A P Institute,2013.
[11] European Committee for Standardization.BS EN 14015-2004 Specifi cation for the design and manufacture of site built,vertical,cylindrical,flat-bottomed,aboveground,welded,steel tanks for the storage of liquids at ambient temperature and above[S]. London:London South Bank University.2005.
[12] JIS B 8501-1995.钢制焊接油罐结构[S].Tokyo:JISC,1997. JIS B 8501-1995. Steel Welding Tank Structure[S]. Tokyo:JISC, 1997.
[13] 李慧.中、美、欧、日建筑抗震规范地震作用对比研究[D].哈尔滨:哈尔滨工业大学,2011. LI Hui.Comparative Study on Seismic Action of Chinese, American, European and Japanese Building Codes[D].Harbin:Harbin University of Technology, 2011.
[14] 陈立栋.长周期地震反应特点及高阶振型影响分析[D].南京:东南大学,2016. CHEN Lidong. Characteristics of Long Period Seismic Response and Analysis of the Influence of High-Order Modes[D]. Nanjing:Southeast University, 2016.
[15] 孙建刚,周利剑.水平地震激励下储罐液体晃动与提离分析[J].地震工程与工程振动,2007, 27(5):134-138. SUN Jiangang, ZHOU Lijian. Analysis of liquid sloshing and lift-off of storage tanks under horizontal earthquake excitation[J].Seismic Engineering and Engineering Dynamics, 2007, 27(5):134-138.
[16] 晏顺娟.水平地震激励下非锚固浮顶罐动力响应试验研究[D].杭州:浙江大学,2012. YAN Shunjuan.Experimental Study on Dynamic Response of Unanchored Floating Roof Tank Excited by Horizontal Earthquake[D].Hangzhou:Zhejiang University, 2012.
[17] 范力.欧洲规范8与中国抗震设计规范关于抗震设防目标和地震作用的比较[J].结构工程师, 2006, 12:22-6. FAN Li.Comparison of seismic fortification objectives and seismic effects between European Code 8 and Chinese Code for Seismic Design[J].Structural Engineer, 2006, 12:22-6.
[18] 蒋志楠.我国建筑抗震规范中部分条款的演变及与欧美规范的对比探讨[D].哈尔滨:中国地震局工程力学研究所, 2010. JIANG Zhinan.Evolution of Some Provisions in Chinese Building Seismic Codes and Comparison with European and American Codes[D].Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2010.

相似文献/References:

[1]谢石连,郭连江,杨光丽.某桥墩承台病害分析与处理[J].自然灾害学报,2011,20(03):087.
 XIE Shi-lian,GUO Lian-jiang,YANG Guang-li.Problem analysis and treatment for some pier cap[J].,2011,20(03):087.
[2]王玉松.基于地理信息的城市消防监督管理系统构建[J].自然灾害学报,2011,20(06):172.
 WANG Yu-song.Construction of urban fire protection monitoring and management system based on geographic information[J].,2011,20(03):172.
[3]佟瑞鹏.大型社会活动事故风险管理程序与方法[J].自然灾害学报,2007,16(04):157.
 TONG Rui-peng.Basic procedure and methods of risk management for large-scale social events[J].,2007,16(03):157.
[4]张星,陈惠,吴菊薪.气象灾害影响福建粮食生产安全的机理分析[J].自然灾害学报,2008,17(02):150.
 ZHANG Xing,CHEN Hui,WU Ju-xin.Cause analysis of meteorological disaster effect on safety in production of grain in Fujian Province[J].,2008,17(03):150.

备注/Memo

备注/Memo:
收稿日期:2018-09-19;改回日期:2018-12-29。
基金项目:国家自然科学基金项目(51878124,51478090);辽宁省自然科学基金指导计划(20180550073,2015020620)
作者简介:周利剑(1974-),男,副教授,博士,主要从事防灾减灾及防护工程研究.E-mail:35326918@qq.com
通讯作者:吴育建(1989-),男,硕士研究生,主要从事防灾减灾及防护工程研究.E-mail:wuyujianmail@163.com
更新日期/Last Update: 1900-01-01