[1]马新生,郑永路,谢志南.流-固耦合波动模拟及Scholte波特性研究[J].自然灾害学报,2019,28(03):104-111.[doi:10.13577/j.jnd.2019.0312]
 MA Xinsheng,ZHENG Yonglu,XIE Zhinan.Study on fluid-solid coupled wave numerical simulation and Scholte wave characteristics[J].,2019,28(03):104-111.[doi:10.13577/j.jnd.2019.0312]
点击复制

流-固耦合波动模拟及Scholte波特性研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年03期
页码:
104-111
栏目:
出版日期:
2019-06-28

文章信息/Info

Title:
Study on fluid-solid coupled wave numerical simulation and Scholte wave characteristics
作者:
马新生12 郑永路2 谢志南2
1. 中国科学技术大学 地球和空间科学学院, 安徽 合肥 230026;
2. 中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080
Author(s):
MA Xinsheng12 ZHENG Yonglu2 XIE Zhinan2
1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China;
2. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
流-固耦合谱元Scholte波幅值衰减
Keywords:
fluid-solid couplingspectral-elementscholte waveamplitude attenuation
分类号:
P315.3+1;P738.4;X9
DOI:
10.13577/j.jnd.2019.0312
摘要:
基于流-固耦合波动勒让德谱元模拟方案,通过数值算例研究了流-固界面上方震源作用下Scholte波的形成机理和特性。数值结果表明,当流体中P波波速大于固体S波速时,沿流-固界面法线方向,Scholte波的幅值在流体中的衰减速率大于固体,反之则小于固体。在此基础上,初步讨论了流体震源到流-固界面的距离与Scholte波波长比值这一参数对Scholte波幅值的影响,Scholte波幅值随该比值增加呈指数衰减,对该比值大于1.5的情形,流体震源激发的Scholte波基本可以忽略不计。上述结果对深入分析海底地震动震相具有一定意义。
Abstract:
Based on the spectral element method for space discretization, a scheme for numerical simulation of fluid-solid coupling wave propagation in infinite domain has been obtained. The characteristics of Scholte wave generated by the source near the fluid-solid interface are studied. Results show that in case the P wave velocity of fluid is greater than solid S wave, along the normal direction, interface Scholte amplitude attenuation rate in the water is greater than that in the solid, conversely, the attenuation rate in the solid is greater than that in the water. Moreover, the relationship between the energy of excited Scholte wave and the distance of source to the fluid-solid interface has been discussed. In case the distance of source to the fluid-solid interface is greater than 1.5 of dominant wave length of wave in the fluid or in the solid medium, the energy of excited Scholte wave can be neglected.

参考文献/References:

[1] 邱大洪. 海岸和近海工程学科中的科学技术问题[J]. 大连理工大学学报, 2000, 19(6):631-637. QIU Dahong. Scientific and technological problems in coastal and offshore engineering[J]. Journal of Dalian University of Technology, 2000, 19(6):631-637.(in Chinese)
[2] Ren Yefei, Wen Ruizhi, Song Yuying. Recent progress of Tsunami hazard mitigation in China[J]. Episodes:Journal of International Geoscience, 2014, 37(4):277-283.
[3] 陈颙, 张先康, 丘学林,等. 陆地人工激发地震波的一种新方法[J]. 科学通报, 2007, 52(11):1317-1321. CHEN Yu, ZHANG Xiankang, QIU Xuelin, et al. A new method for artificially stimulating seismic waves on land[J]. Chinese Science Bulletin, 2007, 52(11):1317-1321.(in Chinese)
[4] Zhu J, Popovics J S, Schubert F. Leaky Rayleigh and Scholte waves at the fluid-solid interface subjected to transient point loading[J]. The Journal of the Acoustical Society of America, 2004, 116(4):2101-2110.
[5] Biot, M. A. The interaction of rayleigh and stoneley waves in the ocean bottom[J]. Bulletin of the Seismological Society of America, 1952, 42(1):81-93.
[6] Yoshida, M. Velocity and response of higher mode Rayleigh waves for the Pacific ocean[J]. Bulletin of the Earthquake Research Institute University of Tokyo, 1978, 53:1135-1150.
[7] Ansell, J. H. The roots of the Stoneley wave equation for solid-liquid interfaces[J]. Pure & Applied Geophysics, 1972, 94(1):172-188.
[8] Mayes, M. J., P. B. Nagy, L. Adler, et al. Excitation of surface waves of different modes at fluid-porous solid interface[J]. Journal of the Acoustical Society of America, 1986, 79(2):249.
[9] Guzhev, S. N. Study of phase velocity and energy distribution of Stoneley waves at a solid-iquid interface[J]. Journal of the Acoustical Society of America, 1994, 95(2):661-667.
[10] Strick, E., A. S. Ginzbarg. Stoneley-wave velocities for a fluid-solid interface[J]. Bulletin of the Seismological Society of America, 1958(1):51-63.
[11] Carbajal-Romero, M., E. Flores-Mendez, N. Flores-Guzmán, et al. Scholte waves on fluid-solid interfaces by means of an integral formulation[J]. GeofísicaInternacional, 2013, 52(1):21-30.
[12] Vinh, P. C., P. T. H. Giang. On formulas for the velocity of Stoneley waves propagating along the loosely bonded interface of two elastic half-spaces[J]. Wave Motion, 2011, 48(7):646-656.
[13] Vinh, P. C. Scholte-wave velocity formulae[J]. Wave Motion, 2013, 50(2):180-190.
[14] Komatitsch D, Tromp J. Introduction to the spectral-element method for 3-D seismic wave propagation[J]. Geophysical Journal International, 1999, 139(3), 806-822.
[15] Komatitsch D, Liu Q, Tromp J, Suss P, Stidham C, & Shaw J H. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J].Bulletin of the Seismological Society of America, 2004, 94(1), 187-206.
[16] Tape C, Liu Q, Maggi A, & Tromp J. Seismic tomography of the southern California crust based on spectral-element and adjoint methods[J]. Geophysical Journal International, 2010, 180(1), 433-462.
[17] Floresmendez E, Carbajalromero M, Floresguzmán N, et al. Rayleigh’s, Stoneley’s, and Scholte’s Interface Waves in Elastic Models Using a Boundary Element Method[J]. Journal of Applied Mathematics, 2012:1-15.

相似文献/References:

[1]王秀丽,韩飞.泥石流作用下新型楔挡分流结构的流-固耦合动力分析[J].自然灾害学报,2014,23(02):061.[doi:1004-4574(2014)02-0061-06]
 WANG Xiuli,HAN Fei.Flow-solid coupling dynamic analysis of new-type wedge block shunt structure under effect of debris flow[J].,2014,23(03):061.[doi:1004-4574(2014)02-0061-06]

备注/Memo

备注/Memo:
收稿日期:2018-04-23;改回日期:2018-05-10。
基金项目:国家自然科学基金项目(51678539,51808516);黑龙江省国家科技重大专项和重点研发项目省级资助资金(GX16C006)
作者简介:马新生(1980-),男,助理研究员,硕士研究生,主要从事强震动观测技术及方法研究.E-mail:xinshenghit@163.com
通讯作者:谢志南(1984-),男,研究员,主要从事地震波动数值模拟研究.E-mail:wla_2012@163.com
更新日期/Last Update: 1900-01-01