[1]毛晨曦,常旭.主余震作用下自复位钢筋混凝土框架结构抗震性能振动台试验研究[J].自然灾害学报,2019,28(04):001-12.[doi:10.13577/j.jnd.2019.0401]
 MAO Chenxi,CHANG Xu.Shake table tests of a self-centering RC frame structure under mainshock-aftershock ground motions[J].,2019,28(04):001-12.[doi:10.13577/j.jnd.2019.0401]
点击复制

主余震作用下自复位钢筋混凝土框架结构抗震性能振动台试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年04期
页码:
001-12
栏目:
出版日期:
2019-08-28

文章信息/Info

Title:
Shake table tests of a self-centering RC frame structure under mainshock-aftershock ground motions
作者:
毛晨曦 常旭
中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080
Author(s):
MAO Chenxi CHANG Xu
Institute of Engineering Mechanics, China Earthquake Administration;Key Laboratory of Earthquake Engineering and Engineering Vibration, China Earthquake Adminstration, Harbin 150080, China
关键词:
自复位框架主余震振动台试验预应力低碳钢阻尼器
Keywords:
self-centering framemainshock-aftershockshake table testprestressmild steel damper
分类号:
TU352.1;X948
DOI:
10.13577/j.jnd.2019.0401
摘要:
为了研究自复位钢筋混凝土框架结构在各水准主余震下的抗震性能,本文完成了一幢两层单跨双向自复位框架结构(1/2缩尺比)振动台试验。整个框架结构设计包括3种类型自复位节点:柱-基础节点、顶铰梁-柱节点(结构Y向)和普通梁-柱节点(结构X向),其中,采用无粘结后张预应力筋为节点提供自复位能力,前两种节点采用外置可替换的低碳钢(MS)阻尼器作为耗能装置,普通梁-柱节点采用角钢作为耗能装置。试验选取一条典型远场IV类场地地震动(含两条水平分量),通过调整地震动PGA进行双向主震加载(从中震到超大震),每次主震后,施加两次PGA较小的地震动,以模拟余震对结构的作用。试验结果表明:(1)在超大震下,结构层间位移角可以达到2.4%,此时主体框架结构损伤不严重,主要在混凝土梁和柱上产生大量肉眼可见的微裂缝;(2)从中震开始,柱-基础节点发生抬升,并且梁-柱节点产生开口转动;结构变形主要集中在节点开口位置,MS阻尼器可以发挥耗能作用(尤其是柱-基础节点阻尼器);(3)在各幅值主余震加载过程中,预应力筋存在预应力损失,但震后残余变形比较小,结构能够自复位。
Abstract:
To investigate the seismic performance of self-centering reinforced concrete(RC) frame structures, the shake table tests of a three-dimensional two-story single-span self-centering RC frame structure (1/2 scale ratio)were completed under mainshock-aftershock ground motions at various hazard levels. The entire frame structure includes three types of self-centering joints:column-base joint, beam-column joint with a top hinge (structure Y-direction) and common beam-column joint(structure X-direction). The unbonded post-tensioning(PT)tendons were used to provide the self-centering capability for the joints. The external replaceable mild steel (MS) dampers were installed to the first two types of joints to dissipate seismic energy, while the angle steel was adopted at the common beam-column joints. A typical far-field ground motion at class IV site (including two horizontal components) was selected. The PGAs were adjusted to perform two-way main-shock loading (from the middle to very rare earthquakes).After each main-shock, the ground motions with small PGAs were applied twice to simulate the effects of aftershocks on the structure. The test results show that:(1)Under the very rare earthquakes, the maximum interstory drift reaches 2.4%.At this time, the damage of the main frame structure is not severe, and only a large number of micro-cracks visible to the naked eye are generated on the concrete beams and columns.(2)From the middle earthquakes, the column-base joints become uplifting, and the beam-column joints start to produce opening rotation; the structural deformation is mainly concentrated at the opening position of the joints. The seismic energy can be well dissipated by the MS dampers (especially the dampers at the column-base joints).(3)The prestress loss occurs during each mainshock-aftershock loading process, but the residual deformation of the structure after earthquakes is relatively small, and the structure can be self-centering.

参考文献/References:

[1] Priestley M J N, Sritharan S, Conley J R, et al. Preliminary results and conclusions from the PRESSS five-story precast concrete test building[J]. PCI Journal, 1999, 44(6):42-67.
[2] Morgen B G, Kurama Y C. A friction damper for post-tensioned precast concrete moment frames[J]. PCI Journal, 2004, 49(4):112-133.
[3] Ozden S, Ertas O. Behavior of unbonded, post-tensioned, precast concrete connections with different percentages of mild steel reinforcement[J]. PCI Journal, 2007, 52(2):32-44.
[4] Song L L, Guo T, Chen C. Experimental and numerical study of a self-centering prestressed concrete moment resisting frame connection with bolted web friction devices[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(4):529-545.
[5] Cao Z L, Wang H, Guo T. Fragility analysis of self-centering prestressed concrete bridge pier with external aluminum dissipators[J]. Advances in Structural Engineering, 2017, 20(8):1210-1222.
[6] 毛晨曦,于樵,张昊宇,等.预应力自复位钢筋混凝土柱及梁柱节点拟静力试验研究[J].自然灾害学报,2017, 26(6):1-12. MAO Chenxi, YU Qiao, ZHANG Haoyu, et al.Pseudo-static tests of prestressed self-centering reinforced concrete column and beam-column joints[J]. Journal of Natural Disasters, 2017, 26(6):1-12.(in Chinese)
[7] Lu X L, Cui Y, Liu J J, et al. Shaking table test and numerical simulation of a 1/2-scale self-centering reinforced concrete frame[J]. Earthquake Engineering & Structural Dynamics, 2015, 44(12):1899-1917.
[8] Cui Y, Lu X L, Jiang C. Experimental investigation of tri-axial self-centering reinforced concrete frame structures through shaking table tests[J]. Engineering Structures, 2017, 132:684-694.
[9] ASCE/SEI 7-10Minimum Design Loads for Buildings and Other Structures[S]. Reston:American Society of Civil Engineers, 2010.
[10] Pacific Earthquake Engineering Research Center (PEER).NGA-West2-Shallow Crustal Earthquakes in Active Tectonic Regimes[DB/OL]. 2013[2019-05-23]. https://ngawest2.berkeley.edu.
[11] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010. GB50011-2010 Code for Seismic Design of Buildings[S]. Beijing:Building Industry Press of China, 2010. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-05-23;改回日期:2019-06-23。
基金项目:国家自然科学基金项目(51678543)
作者简介:毛晨曦(1974-),女,研究员,博士,主要从事结构工程抗震和通信系统地震灾害评估等方面的研究.E-mail:maochenxi@iem.ac.cn
更新日期/Last Update: 1900-01-01