[1]田敬博,朱鹏,屈文俊,等.火灾后混合配筋混凝土梁抗弯试验研究[J].自然灾害学报,2019,28(04):022-31.[doi:10.13577/j.jnd.2019.0403]
 TIAN Jingbo,ZHU Peng,QU Wenjun,et al.Experimental testing on the flexural capacity of hybrid-reinforced concrete beams after fire[J].,2019,28(04):022-31.[doi:10.13577/j.jnd.2019.0403]
点击复制

火灾后混合配筋混凝土梁抗弯试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年04期
页码:
022-31
栏目:
出版日期:
2019-08-28

文章信息/Info

Title:
Experimental testing on the flexural capacity of hybrid-reinforced concrete beams after fire
作者:
田敬博 朱鹏 屈文俊 闫冰
同济大学 建筑工程系, 上海 200092
Author(s):
TIAN Jingbo ZHU Peng QU Wenjun YAN Bing
Department of Structural Engineering, Tongji University, Shanghai 200092, China
关键词:
混合配筋混凝土梁火灾后静力加载试验钢筋-GFRP筋配筋比剩余抗弯承载力
Keywords:
hybrid-reinforced concrete beamsstatic load tests after fireratio of steel bars to GFRP barsresidual flexural capacity
分类号:
X9;X43;TU37
DOI:
10.13577/j.jnd.2019.0403
摘要:
根据6根试验梁的耐火极限时间和火灾后试验梁的变化情况,选取未破坏的1根钢筋混凝土梁及2根混合配筋混凝土梁进行火灾后的静力加载试验,研究了火灾后钢筋混凝土梁和混合配筋混凝土梁的抗弯能力,讨论了钢筋-GFRP筋配筋比和荷载对混合配筋混凝土梁性能的影响,试验结果表明:1)火灾后混合配筋混凝土梁中GFRP筋的强度损失殆尽,钢筋的力学性能可以有一定程度的恢复,火灾后钢筋混凝土梁的力学性能恢复情况要优于混合配筋混凝土梁。2)纵筋中钢筋与GFRP筋的配筋比是影响混合配筋混凝土梁剩余承载能力的主要因素,钢筋与GFRP筋的配筋比越大,火灾后混合配筋混凝土梁的力学性能恢复越好。基于试验现象和理论分析,建议了火灾后混合配筋混凝土梁剩余抗弯能力计算方法,计算结果与试验结果吻合较好,可以用于工程计算。
Abstract:
After fire tests of six reinforced concrete beams,one unbroken concrete beam reinforced with steel bars and two unbroken hybrid-reinforced concrete beams were subjected to static load tests according to the fire resistance time and their condition after fire. In this study, the flexural capacity of the concrete beams reinforced with steel bars and hybrid-reinforced concrete beams after fire are investigated. The influence of the ratio of the steel bars to GFRP bars and the load on the hybrid-reinforced concrete beams is discussed. The test results show:Firstly, the strength of the GFRP bars was basically wiped out, but the strength of the steel bars can restore to a certain degree after the fire. The restoring of the flexural capacity of the concrete beams reinforced with steel bars is better than that of the hybrid-reinforced concrete beams. Secondly, the residual flexural capacity of the hybrid-reinforced concrete beams is significantly influenced by the ratio of the steel bars to the GFRP bars. The larger the ratio is, the better the restoring of the flexural capacity after fire. Based on experiments and a theoretical analysis, a method for calculating the residual flexural capacity of hybrid-reinforced concrete beams is proposed. The results of calculation and experiment show a good agreement.It can be concluded that this method can be used for future engineering applications.

参考文献/References:

[1] Pang,L., Qu,W.J., Zhu,P., et al. Design propositions for hybrid FRP-steel reinforced concrete beams[J]. Journal of Composites for Construction, 2015, 20(4):04015086.
[2] 刘文超,曹万林,张建伟,等.火灾后钢管再生混凝土柱轴压性能试验研究[J].自然灾害学报,2017,26(5):45-50. LIU Wenchao, CAO Wanlin, ZHANG Jianwei, et al. Experimental study on axial compression behavior of recycled concrete-filled steel tubular columns after fire exposure[J]. Journal of Natural Disasters, 2017,26(5):45-50.(in Chinese)
[3] 陈适才,任爱珠,陆新征.火灾下空间混凝土框架结构的反应分析与模拟[J].自然灾害学报,2007, 16(6):88-92. CHEN Shicai, REN Aizhu, LU Xinzheng. Numerical analysis and simulation of space concrete frames under fire[J]. Journal of Natural Disasters, 2007, 16(6):88-92.(in Chinese)
[4] Abrams M S. Compressive strength of concrete at temperatures to 1600F[J]. Special Publication, 1971, 25:33-58.
[5] Hsu J H, Lin C S. Residual bearing capabilities of fire-exposed reinforced concrete beams[J]. International Journal of Applied Science & Engineering, 2006, 4(2):151-163.
[6] El-Hawary M M, Ragab A M, El-Azim A A, et al. Effect of fire on shear behaviour of R.C. beams[J]. Computers & Structures, 1997, 65(2):281-287.
[7] El-Hawary M M, Ragab A M, El-Azim A A, et al. Effect of fire on flexural behaviour of R.C. beams[J]. Construction & Building Materials, 1996, 10(2):147-150.
[8] Jiangtao Yu, Zhaoudao Lu, Kai X. Experimental study on the performance of RC continuous members in bending after exposure to fire[J]. Procedia Engineering, 2011, 14:821-829.
[9] BCI. Assessment and Repair of Fire-Damaged Concrete Structures[R]. Technical Report No.33.London:The British Concrete Institute, 1990.
[10] Short N R, Purkiss J A, Guise S E. Assessment of fire damaged concrete using colour image analysis[J]. Construction & Building Materials, 2001, 15(1):9-15.
[11] Chew M Y L. The assessment of fire damaged concrete[J]. Building & Environment, 1993, 28(1):97-102.
[12] Chew M Y L. Effect of heat exposure duration on the thermoluminescence of concrete[J]. Aci Materials Journal, 1993, 45(163):131-138.
[13] 陆洲导,廖杰洪,余江滔.火灾后混凝土结构损伤检测方法研究与探讨[J].防灾减灾工程学报,2012,32(S1):36-39. LU Zhoudao, LIAO Jiehong, YU Jiangtao. Study and discussion on inspection of fire-damaged concrete structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012,32(S1):36-39.(in Chinese)
[14] Dorsch D F. Assessment and Repair of Fire-Damaged Concrete Structures[C]. Innovation in Repair Techniques of Concrete Structures, 2015.
[15] 周长东, 吕西林, 金叶. GFRP筋增强混凝土结构的抗火设计[J]. 建筑材料学报, 2009, 12(1):32-35. ZHOU Changdong, LV Xilin, JIN Ye. Fire-resistance design on concrete structures reinforced with GFRP bars[J]. Journal of Building Materials, 2009, 12(1):32-35.(in Chinese)
[16] 周长东, 吕西林, 金叶. 火灾高温下玻璃纤维筋的力学性能研究[J]. 建筑科学与工程学报, 2006, 23(1):23-28. ZHOU Changdong, LV Xilin, JIN Ye. Research on mechanical behavior of GFRP bars in high temperature[J]. Journal of Architecture and Civil Engineering, 2006, 23(1):23-28.(in Chinese)
[17] 周长东. GFRP筋增强混凝土结构抗火性能研究[D]. 上海:同济大学, 2005. ZHOU Changdong. The Fire Resistance of Concrete Structures Reinforced with GFRP Bars[D]. Shanghai:Tongji University, 2005.(in Chinese)
[18] ISO-834, Fire resistance tests, Elements of building construction. International Standards Organisation, Geneva; 1975.
[19] GB 50010-2010混凝土结构设计规范[S].北京:中国建筑工业出版社, 2010. GB 50010-2010 Code for Design of Concrete Structures[S]. Beijing:China Architecture & Building Press, 2010.(in Chinese)
[20] ASTM E119. Standard Test Methods for Fire Tests of Building Construction and Materials[S].ASTM International.2014.
[21] 王守谦. 建筑防火[M]. 北京:中国建筑工业出版社, 2000. WANG Shouqian. Fire Protection of Building[M]. Beijing:China Architecture & Building Press, 2000.(in Chinese)
[22] 吴波. 火灾后钢筋混凝土结构的力学性能[M].北京:科学出版社,2003. WU Bo. The Mechanical Property of Reinforced Concrete Beams after Fire[M].Beijing:Science Press,2003.(in Chinese)
[23] 过镇海,时旭东. 钢筋混凝土原理和分析[M]. 清华大学出版社, 2003. GUO Zhenhai, SHI Xudong.Reinforced Concrete Theory and Analyse[M].Tsinghua University Press, 2003.(in Chinese)
[24] 陈宗平,周山崴,梁厚燃.高温后钢筋再生混凝土梁受剪性能及斜截面承载力计算[J].自然灾害学报,2018,27(5):138-150. CHEN Zongping, ZHOU Shanwei, LIANG Houran. Shear behavior test and bearing capacity calculation of recycled aggregate concrete beam after high temperature[J]. Journal of Natural Disasters, 2018,27(5):138-150.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-05-05;改回日期:2019-06-27。
基金项目:国家自然科学基金项目(51678430);国家重点研发计划项目(2017YFC0703003)
作者简介:田敬博(1987-),男,博士研究生,主要从事混凝土结构研究.E-mail:tianjingbo.tj@hotmail.com
通讯作者:朱鹏(1981-),男,讲师,博士,主要从事混凝土结构研究.E-mail:pzhu@tongji.edu.cn
更新日期/Last Update: 1900-01-01