[1]张睿骁,樊晓一,姜元俊,等.不同拦挡结构对滑坡-碎屑流冲击和堆积特征的影响[J].自然灾害学报,2019,28(04):052-61.[doi:10.13577/j.jnd.2019.0406]
 ZHANG Ruixiao,FAN Xiaoyi,JIANG Yuanjun,et al.The different retaining structures influenced on landslide-debris flow impact and accumulation characteristics[J].,2019,28(04):052-61.[doi:10.13577/j.jnd.2019.0406]
点击复制

不同拦挡结构对滑坡-碎屑流冲击和堆积特征的影响
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年04期
页码:
052-61
栏目:
出版日期:
2019-08-28

文章信息/Info

Title:
The different retaining structures influenced on landslide-debris flow impact and accumulation characteristics
作者:
张睿骁1 樊晓一12 姜元俊3 李天话1
1. 西南科技大学 土木工程与建筑学院, 四川 绵阳 621010;
2. 工程材料与结构冲击振动四川省重点实验室, 四川 绵阳 621010;
3. 中国科学院 成都山地灾害与环境研究所, 四川 成都 610041
Author(s):
ZHANG Ruixiao1 FAN Xiaoyi12 JIANG Yuanjun3 LI Tianhua1
1. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China;
2. Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621010, China;
3. Institute of Mountain Hazard and Environment, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
碎屑流拦挡结构冲击堆积特性
Keywords:
debris flowresistive structureimpactaccumulation characteristics
分类号:
TU432;X43;P315.93
DOI:
10.13577/j.jnd.2019.0406
摘要:
滑坡碎屑流是高位滑坡的一种常见运动形式,具有大规模、远程、高速的特点,在滑坡碎屑流运动路径上设置拦挡结构,可减小其致灾范围和致灾强度。文章运用三维离散元模拟软件,研究3种不同拦挡结构对滑坡碎屑运动和堆积特性的影响。研究结果表明:由于拦挡结构的作用,碎屑流颗粒的运动方向发生偏转,同时滑体的速度分布产生显著的变化-滑体最大速度从坡脚处变化到滑槽上颗粒的后缘。随着拦挡结构宽度的增加,法向力显著增大,切向力增加不显著;堆积区面积和最大水平运动距离不断减小,安全区的面积逐渐增加。本文引入无量纲数(Nk)分析颗粒分选效应对不同颗粒的运动和堆积特性的影响,相同拦挡宽度时,K3Nk值最小,K1的Nk值最大;3种颗粒的Nk值随着拦挡结构宽度的增加逐渐增大。有拦挡结构时,碎屑流颗粒堆积体积百分比呈现指数函数分布,即随着运动距离的增大逐渐减小;无拦挡结构时,颗粒堆积体积的百分比呈现Extreme函数分布,即体积分布在中间位置附近取得峰值,向两侧呈递减趋势。
Abstract:
Landslide-debris flow is a common form of motion for high-level landslides. It has the characteristics of large scale, long runout distance, and high flow velocity. The deposit area of landslides and weaken the intensity of hazard could be reduced by the retaining structure. In this study, we used three-dimensional discrete element simulation software to study the accumulation and kinematic characteristics of debris flow with three different retaining structures. The results indicated that the movement direction of the debris flow particles is deflected and the velocity distribution of the sliding body changes significantly, which the maximum speed of the sliding body changes from the slope to the trailing edge. As the length of the retaining structure increases, the normal force increases significantly, and the tangential force increases slightly, the area of the stacking area and the maximum horizontal moving distance continue to decrease, and the area of the safe area continues to increase. Also, this paper introduced the dimensionless number (Nk) to analyze the effect of particle sorting effect on the kinematic and accumulation characteristics of different particles. For the same intercept width, the Nk value of K3 is the smallest and the Nk value of K1 is the largest, the Nk values of three particles gradually increase with the increase of the barrier structure width.After adding the resistive structure, the percentage of debris flow volume exhibits an exponential function distribution, and it decreases gradually with the increase of the moving distance; when there is no resistive structure, the percentage of the particle bulk volume exhibits the Extreme function distribution, that is, the volume distribution reaches the peak near the middle position, both sides show a decreasing trend.

参考文献/References:

[1] 段晓冬, 樊晓一, 姜元俊,等. 碎屑流冲击挡墙的土拱效应研究[J].自然灾害学报,2015,24(5):92-102. DUAN Xiaodong, FAN Xiaoyi, JIANG Yuanjun, et al. Study on soil arch effect of dry debris flow for impact barricade wall[J].Journal of Natural Disasters,2015,24(5):92-102.(in Chinese)
[2] 孙新坡, 何思明, 肖军,等. 基于SPH法的岩崩碎屑流与挡板相互作用模拟[J]. 自然灾害学报, 2016, 25(3):96-103. SUN Xinpo, HE Siming, XIAO Jun, et al. Simulation of rockfall debris-baffle plate interaction based on SPH method[J].Journal of Natural Disasters, 2016, 25(3):96-103.(in Chinese)
[3] Zhou G G D, Ng C W W. Numerical investigation of reverse segregation in debris flows by DEM[J]. Granular Matter, 2010, 12(5):507-516.
[4] 陆鹏源,杨兴国,邵帅, 等.滑坡-碎屑流冲切铲刮效应的颗粒离散元模拟[J].水利水电技术,2018,49(7):19-27. LU Pengyuan,YANG Xingguo,SHAO Shuai, et al. Particle discrete element simulation on punching-shear and scraping effect of landslide-debris flow[J].Water Resources and Hydropower Engineering, 2018,49(7):19-27.(in Chinese)
[5] Jiang Y J, Towhata I. Experimental study of dry granular flow and impact behavior against a rigid retaining wall[J]. Rock Mechanics & Rock Engineering, 2013, 46(4):713-729.
[6] Jiang Y J, Zhao Y. Experimental investigation of dry granular flow impact via both normal and tangential force measurements[J]. Geotechnique Letters, 2015, 5(January-March):33-38.
[7] Jiang Y J, Zhao Y, Towhata I, et al. Influence of particle characteristics on impact event of dry granular flow[J]. Powder Technology, 2015, 270:53-67.
[8] 孙新坡,何思明,樊晓一, 等.崩塌体与拦石墙冲击动力演化过程及参数敏感性[J].成都理工大学学报(自然科学版),2017,44(2):232-238. SUN Xinpo, HE Siming, FAN Xiaoyi, et al. The impact dynamic evolution process and parameter sensitivity study on collapse and buttress[J].Journal of Chengdu University of Technology(Science & Technology Edition), 2017,44(2):232-238.(in Chinese)
[9] 孙新坡,何思明,刘恩龙,王汝恒.基于SPH法的岩崩碎屑流与防护结构相互作用分析[J].山地学报,2016,34(3):331-336. SUN Xinpo, HE Siming, LIU Enlong, et al. Analysis of rockfall debris-obstacle interaction with SPH method[J].Mountain Research,2016,34(3):331-336.(in Chinese)
[10] 孙新坡,何思明,樊晓一, 等.颗粒粒径对岩崩碎屑流对挡板冲击影响[J].浙江工业大学学报,2016,44(2):221-225+236. SUN Xinpo, HE Siming, FAN Xiaoyi, et al. The effect of particle size on the impact of rockfall debris on obstacles[J].Journal of Zhejiang University of Technology,2016,44(2):221-225+236.(in Chinese)
[11] 毕钰璋,何思明,李新坡, 等.约束条件下粗细混合颗粒动力机理分析[J].岩土工程学报,2016,38(3):529-536. BI Yuzhang, HE Siming, LI Xinpo, et al.Kinetic mechanism of mixed particles under constraint conditions[J].Chinese Journal of Geotechnical Engineering,2016,38(3):529-536.(in Chinese)
[12] 彭双麒,许强,郑光,等.碎屑流堆积物粒度分布与运动特性的关系——以贵州纳雍普洒村崩塌为例[J].水文地质工程地质,2018,45(4):129-136. PENG Shuangqi, XU Qiang, ZHENG Guang, et al.Relationship between particle size distribution and movement characteristics of rock avalanche deposits:a case study of the Pusa village rock avalanche in Nayong of Guizhou[J].Hydrogeology & Engineering Geology,2018,45(4):129-136.(in Chinese)
[13] 雷先顺,朱大勇,刘诚, 等.考虑滑道坡度和宽度的滑坡模型试验研究[J].岩土力学,2017,38(5):1281-1288. LEI Xianshun, ZHU Dayong, LIU Cheng, et al.Model test study of the effect of slope angle and chute width on landslide[J].Rock and Soil Mechanics,2017,38(5):1281-1288.(in Chinese)
[14] 雷先顺,沈银斌,朱大勇, 等.碎屑流模型试验研究[J].合肥工业大学学报(自然科学版),2016,39(10):1367-1371+1396. LEI Xianshun, SHEN Yinbin, ZHU Dayong, et al.Model Studies of debris flow[J].Journal of Hefei University of Technology(Natural Science),2016,39(10):1367-1371+1396.(in Chinese)
[15] 王畯才,卢坤林,朱大勇.基于室内模型试验的滑坡碎屑流堆积分布规律研究[J].工程地质学报,2017,25(6):1509-1517. WANG Juncai, LU Kunlin, ZHU Dayong.Indoor modeling test for regularity of deposit position of landslide-debris avalanches[J].Journal of Engineering Geology,2017,25(6):1509-1517.(in Chinese)
[16] 孙新坡,何思明,高成凤, 等.牛圈沟滑坡离散元数值分析[J].兰州大学学报(自然科学版),2017,53(1):48-53. SUN Xinpo, HE Siming, GAO Chengfeng, et al. Discrete element numerical analysis of Niujuangou landslide[J].Journal of Lanzhou University(Natural Sciences), 2017,53(1):48-53.(in Chinese)
[17] Zhou G G D, Ng C W W. Numerical investigation of reverse segregation in debris flows by DEM[J]. Granular Matter, 2010, 12(5):507-516.
[18] Ng C W W, Song D, Choi C E, et al. Impact mechanisms of granular and viscous flows on rigid and flexible.[J]. Canadian Geotechnical Journal, 2017, 54(2).
[19] 毕钰璋,何思明,付跃升, 等.基于离散元方法的高速远程滑坡碎屑流新型防护结构[J].山地学报,2015,33(5):560-570. BI Yuzhang, HE Siming, FU Yuesheng, et al.Simulation of the dynamic response of new type rock avalanche impact defense structure and the mechanism of energy dissipation base on DEM[J].Mountain Research,2015,33(5):560-570.(in Chinese)
[20] 毕钰璋,何思明,王东坡, 等.碎屑流冲击下的桥墩动力响应特征分析[J].中国地质灾害与防治学报,2017,28(4):16-21. BI Yuzhang, HE Siming, WANG Dongpo, et al.Discrete-element investigation of rock avalanches impact on the bridge pier[J].The Chinese Journal of Geological Hazard and Control,2017,28(4):16-21.(in Chinese)
[21] Albaba A, Lambert S, Nicot F, et al. Relation between microstructure and loading applied by a granular flow to a rigid wall using DEM modeling[J]. Granular Matter, 2015, 17(5):603-616.
[22] Li Xinpo, He Siming, Luo Yu, Wu Yong, Discrete element modeling of debris avalanche impact on retaining walls[J]. Journal of Mountain Science, 2010:276-281.
[23] Diana Salciarini, Claudio Tamagnini, Pietro Conversini. Discrete element modeling of debris-avalanche impact on earthfill barriers[J]. Physics & Chemistry of the Earth, 2010, 35(3-5):172-181.
[24] Bi Y, He S, Li X, et al. Effects of segregation in binary granular mixture avalanches down inclined chutes impinging on defending structures[J]. Environmental Earth Sciences, 2016, 75(3):263.
[25] 樊赟赟,王思敬,王恩志.障碍物的设置对颗粒流动过程的影响[J].土木建筑与环境工程,2010,32(5):35-40. FAN Yunyun, WANG Sijing, WANG Enzhi.Influence of obstacles on granular flows[J].Journal of Civil,Architectural & Environmental Engineering,2010,32(5):35-40.(in Chinese)
[26] 樊晓一,冷晓玉,段晓冬.坡脚型与偏转型地震滑坡运动距离及地形因素作用[J].岩土力学,2015,36(5):1380-1388. FAN Xiaoyi, LENG Xiaoyu, DUAN Xiaodong. Influence of topographical factors on movement distances of toe-type and turning-type landslides triggered by earthquake[J].Rock and Soil Mechanics,2015,36(5):1380-1388.(in Chinese)
[27] 杨海龙. 沟谷偏转型滑坡-碎屑流运动机理研究[D].绵阳:西南科技大学,2018. YANG Hailong. Movement Mechanism of Turning-Type Landslide Debris Flow in Valley Topography[D].Mianyang:Southwest University of Science and Technology,2018.(in Chinese)
[28] 杨海龙,樊晓一,赵运会, 等.偏转角度对滑坡-碎屑流运动影响的模型试验[J].山地学报,2017,35(3):316-322. YANG Hailong, FAN Xiaoyi, ZHAO Yunhui, et al. Model tests on influence of deflection angle on the movement of landslide-debris avalanches[J].Mountain Research,2017,35(3):316-322.(in Chinese)
[29] Barrios G K P, Carvalho R M D, Kwade A, et al. Contact parameter estimation for DEM simulation of iron ore pellet handling[J]. Powder Technology,2013, 248(2):84-93.
[30] 李祥龙, 唐辉明, 熊承仁,等. 基底刮铲效应对岩石碎屑流停积过程的影响[J]. 岩土力学, 2012, 33(5):001527-1541. LI Xianglong, TANG Huiming, XIONG Chengren, et al. Influence of substrate ploughing and erosion effect on process of rock avalanche[J].Rock and Soil Mechanics, 2012, 33(5):001527-1541.(in Chinese)
[31] Fan R L, Zhang L M, Wang H J, et al. Evolution of debris flow activities in Gaojiagou Ravine during 2008-2016 after the Wenchuan earthquake[J]. Engineering Geology, 2018, 235:1-10.
[32] Cui Y, Choi C E, Liu L H D, et al. Effects of particle size of mono-disperse granular flows impacting a rigid barrier[J]. Natural Hazards, 2018, 91(3):1179-1201.
[33] Hu Xu, Cristina G, Zhixiang Yu, et al. An energy allocation based design approach for flexible rockfall protection barriers[J]. Engineering Structures, 2018,173:831-852.
[34] 刘涌江, 胡厚田, 赵晓彦. 高速滑坡岩体碰撞效应的试验研究[J]. 岩土力学, 2004, 25(2):255-260. LIU Yongjiang, HU Houtian, ZHAO Xiaoyan, et al. Experimental study on impact effect of high-speed landslide[J].Rock and Soil Mechanics, 2004, 25(2):255-260.(in Chinese)

相似文献/References:

[1]段晓冬,樊晓一,姜元俊,等.碎屑流冲击挡墙的土拱效应研究[J].自然灾害学报,2015,24(05):092.[doi:10.13577/j.jnd.2015.0511]
 DUAN Xiaodong,FAN Xiaoyi,JIANG Yuanjun,et al.Study on soil arch effect of dry debris flow for impact barricade wall[J].,2015,24(04):092.[doi:10.13577/j.jnd.2015.0511]

备注/Memo

备注/Memo:
收稿日期:2018-11-06;改回日期:2019-04-03。
基金项目:国家自然科学基金项目(41877524);工程材料与结构冲击振动四川省重点实验室开发基金(18kfjk10);西南科技大学研究生创新基金资助(19ycx0080)
作者简介:张睿骁(1995-),男,硕士研究生,主要从事岩土工程、地质灾害防治方面的研究.E-mail:zhangruix1212@163.com
通讯作者:樊晓一(1974-),男,教授,博士,主要从事岩土工程及地质灾害方面的研究.E-mail:xyfan1003@126.com
更新日期/Last Update: 1900-01-01