[1]李静思,李山,李智录,等.基于协同改造理念的城市雨洪削减效果模拟研究[J].自然灾害学报,2019,28(04):079-89.[doi:10.13577/j.jnd.2019.0409]
 LI Jingsi,LI Shan,LI Zhilu,et al.Simulation study on urban stormwater reduction effect based on synergistic transformation concept[J].,2019,28(04):079-89.[doi:10.13577/j.jnd.2019.0409]
点击复制

基于协同改造理念的城市雨洪削减效果模拟研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年04期
页码:
079-89
栏目:
出版日期:
2019-08-28

文章信息/Info

Title:
Simulation study on urban stormwater reduction effect based on synergistic transformation concept
作者:
李静思1 李山1 李智录1 贾忠华2 罗纨2 许青2
1. 西安理工大学 陕西省西北旱区生态水利工程重点实验室, 陕西 西安 710048;
2. 扬州大学 水利与能源动力工程学院, 江苏 扬州 225009
Author(s):
LI Jingsi1 LI Shan1 LI Zhilu1 JIA Zhonghua2 LUO Wan2 XU Qing2
1. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China;
2. School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225009, China
关键词:
汇流单元协同改造海绵城市SWMM模型LID措施
Keywords:
confluence unitsynergistic transformationsponge citySWMM modelLID measures
分类号:
X523;X9;X43
DOI:
10.13577/j.jnd.2019.0409
摘要:
城市雨洪汇流单元的雨水处理能力因下垫面条件和土地利用类型的分布存在明显差异,将局部区域内雨洪处理能力较强单元与雨洪处理能力较弱单元进行协同改造使其具有水力连通性,有助于海绵城市建设的推进与优化。根据这一理念,采用SWMM模型,以西安市某辖区为例,模拟分析了不同降雨频率下汇流单元协同改造的效果。结果表明:通过汇流单元协同作用,可有效减少1年一遇、2年一遇、5年一遇和10年一遇降雨频率下的雨洪处理能力较弱单元的面积;径流洪峰得到了削减,径流总量降低,区域整体径流系数减小;协同改造可有效减少LID (Low Impact Development)调蓄容积,4种降雨频率下减少比例分别为19.34%、14.31%、13.73%和10.05%。在以中小降雨为主的城市地区通过法律制度、工程措施与经济手段实现协同改造可显著减小洪峰洪量与蓄滞容积,进而减小LID措施建设规模,辅助LID措施共同调洪,具有较强的适用性和良好的应用前景。
Abstract:
The rainwater treatment capacity of the urban rainwater confluence unit differs significantly in accordance with the distribution of the underlying surface conditions and the type of land use. It is advantages for the promotion and optimization of the construction of the sponge city to reconstruct the strong and weak rainwater treatment units with hydraulic connectivity in the local area. Based on the fundamental concept, the SWMM model is adopted to simulate and analyze the synergistic transformation of units in different rainfall levels with an example of Xi’an. The results show that the area of weak rainwater treatment capacity can be effectively reduced by the synergy of the confluence unit concretely in the first-year, two-year, five-year, and 10-year rainfall frequencies. The runoff peak has been cut down, the total runoff declined, and the overall runoff coefficient afterwards deceased. The LID (Low Impact Development) storage volume could be effectively reduced with the synergistic transformation and the proportions are 19.34%, 14.31%, 13.73%, and 10.05% respectively under the four rainfall frequencies. In the urban areas dominated by small and medium-sized rainfall, the flood peak volume and stagnation volume can be significantly reduced with coordinated transformation achieved by the legal system, engineering measures and economic means, thereby lessening the scale of LID measures and assisting it to jointly regulate floods, which has better applicability and outstanding application prospects.

参考文献/References:

[1] 李克强. 政府工作报告[EB/OL]. 新华社, http://www.gov.cn/xinwen/2018-03/22/content_5276608.htm. LI Keqiang. Government working report[EB/OL]. Xinhua News Agency,http://www.gov.cn/xinwen/2018-03/22/content_5276608.htm. (in Chinese)
[2] 麻蓉, 白涛, 黄强, 等. MIKE 21模型及其在城市内涝模拟中的应用[J]. 自然灾害学报, 2017, 26(4):172-179. MA Rong, BAI Tao, HUANG Qiang, et al. MIKE 21 model and its application on urban waterlogging simulation[J]. Journal of Natural Disasters, 2017, 26(4):172-179.(in Chinese)
[3] 王虹, 丁留谦, 程晓陶, 等.美国城市雨洪管理水文控制指标体系及其借鉴意义[J]. 水利学报, 2015, 46(11):1261-1271. WANG Hong, DING Liuqian, CHENG Xiaotao, et al. Hydrologic control criteria framework in the United States and its referential significance to China[J]. Journal of Hydraulic Engineering, 2015, 46(11):1261-1271.(in Chinese)
[4] 夏军, 石卫, 王强, 等. 海绵城市建设中若干水文学问题的研讨[J]. 水资源保护, 2017, 33(1):1-8. XIA Jun, SHI Wei, WANG Qiang, et al. Discussion of several hydrological issues regarding sponge city construction[J]. Water Resources Protection, 2017, 33(1):1-8. (in Chinese)
[5] 王茜, 杨小柳, 徐超伟, 等. 基于土地利用的城市内涝交通风险评价[J]. 自然灾害学报, 2018, 27(5):197-204. WANG Xi,YANG Xiaoliu,XU Chaowei,et al.Landuse-based analysis of waterlogging traffic risk[J].Journal of Natual Disasters, 2018, 27(5):197-204. (in Chinese)
[6] 吴先华, 周蕾, 吉中会, 等. 城市暴雨内涝灾害经济损失评估系统开发研究-以深圳市龙华新区为例[J]. 自然灾害学报, 2017, 26(5):71-82. WU Xianhua, ZHOU Lei, JI Zhonghui, et al. Design of economic losses evaluation information system of rainstorm waterlogging disasters in cities:evidence from Longhua New Distinct in Shenzhen City[J].Journal of Natural Disasters, 2017, 26(5):71-82.(in Chinese)
[7] 宋晓猛, 张建云, 王国庆, 等. 变化环境下城市水文学的发展与挑战-Ⅱ. 城市雨洪模拟与管理[J]. 水科学进展, 2014, 25(5):752-764. SONG Xiaomeng, ZHANG Jianyun, WANG Guoqing, et al. Development and challenges of urban hydrology in a changing environment:Ⅱ:Urban stormwater modeling and management[J]. Advances in Water Science, 2014, 25(5):752-764. (in Chinese)
[8] Debusk K M, Wynn T M. Storm-water bioretention for runoff quality and quantity mitigation[J]. Journal of Environmental Engineering, 2011, 137(9):800-808.
[9] Sansalone J, Asce M, Kuang X, et al. Permeable pavement as a hydraulic and filtration interface for urban drainage[J]. Journal of Irrigation and Drainage Engineering,2008,134(5):666-674.
[10] Kim M H, Sung C Y, Li M H, et al. Bioretention for stormwater quality improvement in Texas:Removal effectiveness of Escherichia coli[J]. Separation and Purification Technology, 2012, 84:120-124.
[11] Trowsdale S A, Simcock R. Urban stormwater treatment using bioretention[J]. Journal of Hydrology, 2011, 397(3/4):167-174.
[12] 唐双成, 罗纨, 贾忠华, 等. 雨水花园对暴雨径流的削减效果[J].水科学进展, 2015, 26(6):787-794. TANG Shuangcheng, LUO Wan, JIA Zhonghua, et al. Effect of rain gardens on storm runoff reduction[J]. Advances in Water Science, 2015, 26(6):787-794. (in Chinese)
[13] 唐双成, 罗纨, 贾忠华, 等. 雨水花园对不同赋存形态氮磷的去除效果及土壤中优先流的影响[J]. 水利学报, 2015, 46(8):943-950. TANG Shuangcheng, LUO Wan, JIA Zhonghua, et al. An experimental study on N and P reductions in a rain garden and the influence of preferential flow[J]. Journal of Hydraulic Engineering, 2015, 46(8):943-950.
[14] 金建荣, 李田, 时珍宝. 高地下水位地区透水铺装控制径流污染的现场实验[J]. 环境科学, 2017, 38(6):2379-2384. JIN Jianrong, LI Tian, SHI Zhenbao. Performance scale permeable pavements for control of runoff pollution in an area with high groundwater level[J]. Environmental Science, 2017, 38(6):2379-2384. (in Chinese)
[15] 李家科, 李亚, 沈冰, 等. 基于SWMM模型的城市雨水花园调控措施的效果模拟[J]. 水力发电学报, 2014, 33(4):60-67. LI Jiake, LI Ya, SHEN Bing, et al. Simulation of rain garden effects in urbanized area based on SWMM[J]. Journal of Hydroelectric Engineering, 2014, 33(4):60-67. (in Chinese)
[16] 危昱萍."城市看海"频现海绵城市规划应回归问题导向[N]. 21世纪经济报道, 2016-08-04(019). WEI Yuping. "City W tches the Sea" Frequent Sponge City Planning Should Return to Problem-oriented[N]. 21st century business herald,2016-08-04-19. (in Chinese)
[17] 王红茹. 全国30个海绵城市试点19城今年出现内涝[J].中国经济周刊, 2016, 35:48-50. WANG Hongru. 30 spongy city pilots nationwide, 19 cities appear guilty this year[J]. China Economic Weekly,2016, 35:48-50. (in Chinese)
[18] 蒋祺, 郑伯红.城市雨洪调蓄空间对洪涝灾害影响研究——以长沙市2017年洪涝灾害为例[J].自然灾害学报, 2018, 27(3):31-40. JIANG Qi, ZHENG Bohong. Study on the influence of urban stormwater detention and retention space on flood disaster——Case study of flood disaster in Changsha, 2017[J].Journal of Natural Disasters, 2018, 27(3):31-40. (in Chinese)
[19] 王虹, 李昌志, 程晓陶. 流域城市化进程中雨洪综合管理量化关系分析[J]. 水利学报, 2015, 46(3):271-279. WANG Hong, LI Changzhi, CHENG Xiaotao. Quantitative analysis of stormwater management strategies in the process of watershed urbanization[J]. Journal of Hydraulic Engineering, 2015, 46(3):271-279. (in Chinese)
[20] 严登华, 王浩, 张建云, 等.从状态改变到能力提升-生态海绵智慧流域建设[J]. 水科学进展, 2017, 28(2):302-310. YAN Denghua, WANG Hao, ZHANG Jianyun, et al. From changing status to improving capability:construction of an ecological sponge-smart river basians[J]. Advances in Water Science, 2017, 28(2):302-310. (in Chinese)
[21] 许青, 贾忠华, 罗纨, 等. 基于功能区差异的海绵城市适宜性研究——以扬州市为例[J]. 中国农村水利水电, 2018, 5:53-57, 62. XU Qing, JIA Zhonghua, LUO Wan, et al. Research on sponge city suitability based on functional area difference-a case study of Yangzhou city[J]. China Rural Water and Hydropower, 2018, 5:53-57,62. (in Chinese)
[22] 代普达. 基于海绵城市建设的雨水排水许可制度及径流转移交易机制研究[A]. 2017城市发展与规划论文集[C], 2017. DAI Puda. Study on rainwater drainage permit system and rainfall runoff trading mechanism based on sponge city[A]. China City Science Research Association[C].2017. (in Chinese)
[23] 代普达. 当前海绵城市理论在实践中的互适性及操作性辨析[A].规划60年:成就与挑战-2016中国城市规划年会论文集(02城市工程规划)[C], 2016. DAI Puda. An analysis of the interoperability and operationality of current sponge city theory in practice[A]. Planning for 60 Years:Achievements and Challenges-Proceedings of China Urban Planning Annual Conference 2016(02 Urban Planning)[C], 2016. (in Chinese)
[24] 唐双成, 罗纨, 贾忠华, 等. 填料及降雨特征对雨水花园削减径流及实现海绵城市建设目标的影响[J]. 水土保持学报, 2016, 30(1):73-78. TANG Shuangcheng, LUO Wan, JIA Zhonghua, et al. Effects of filler and rainfall characteristics on runoff reduction of rain garden and achieving the goal of sponge city construction[J]. Journal of Soil and Water Conservation, 2016, 30(1):73-78. (in Chinese)
[25] 西安市小寨区域海绵城市建设可行性研究报告[R]. 西安:中国电建西北勘测设计研究院, 2017. Feasibility Study Report on the Construction of Sponge City in Xiaozhai Area of Xi’an City[R]. Xi’an:China Electric Power Construction Northwest Survey and Design Institute, 2017. (in Chinese)
[26] 中华人民共和国住房和城乡建设部.海绵城市建设技术指南-低影响开发雨水系统构建(试行)[M]. 北京:中国建筑工业出版社, 2015. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Sponge city construction technical guide-construction of low impact rainwater system (trial)[M]. Beijing:China Architecture & Building Press, 2015. (in Chinese)
[27] 王家彪, 赵建世, 沈子寅, 等. 关于海绵城市两种降雨控制模式的讨论[J]. 水利学报, 2017, 48(12):1491-1498. WANG Jiabiao, ZHAO Jianshi, SHEN Ziyan, et al. Discussion about the two rainfall control approaches in Sponge City Construction[J]. Journal of Hydraulic Engineering, 2017, 48(12):1491-1498. (in Chinese)
[28] 仇保兴. 海绵城市(LID)的内涵、途径与展望[J]. 给水排水, 2015, 41(3):1-7. CHOU Baoxing. The Connotation, ways and prospects of Sponge City (LID)[J]. Water Supply and Sewerage, 2015, 41(3):1-7. (in Chinese)
[29] Rossman L A. Storm water management model user’s manual, version 5.0[M]. Cincinnati:National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency, 2010.
[30] Moore M F, Vasconcelos J G, Zech W C. Modeling Highway Stormwater Runoff and Groundwater Table Variations with SWMM and GSSHA[J]. Journal of Hydrologic Engineering, 2017, 22(8):04017025.
[31] Jang S, Cho M, Yoon J, et al. Using SWMM as a tool for hydrologic impact assessment[J]. Desalination, 2007, 212(1-3):344-356.
[32] Rosa D J, Clausen J C, Dietz M E. Calibration and verification of SWMM for low impact development[J]. JAWRA Journal of the American Water Resources Association, 2015, 51(3):746-757.
[33] Cipolla S S, Maglionico M, Stojkov I. A long-term hydrological modelling of an extensive green roof by means of SWMM[J]. Ecological engineering, 2016, 95:876-887.
[34] 常晓栋, 徐宗学, 赵刚, 等. 基于SWMM模型的城市雨洪模拟与LID效果评价——以北京市清河流域为例[J]. 水力发电学报, 2016, 35(11):84-93. CHANG Xiaodong, XU Zongxue, ZHAO Gang, et al. Urban rainfall-runoff simulations and assessment of low impact development facilities using SWMM model-A case study of Qinghe catchment in Beijing[J]. Journal of Hydroelectric Engineering, 2016, 35(11):84-93. (in Chinese)
[35] Beven K, Binley A M, The future of distributed models:Model calibration and uncertainty prediction[J]. Hydrological processes, 1992,6(3):279-298.
[36] 赵冬泉, 王浩正, 陈吉宁, 等. 城市暴雨径流模拟的参数不确定性研究[J]. 水科学进展, 2009, 20(1):45-51. ZHAO Dongquan, WANG Haozheng, CHEN Jining, et al. Parameters uncertainty analysis of urban rainfall-runoff simulation[J]. Advances in Water Science, 2009, 20(1):45-51. (in Chinese)
[37] 黄金良, 杜鹏飞, 何万谦, 等. 城市降雨径流模型的参数局部灵敏度分析[J]. 中国环境科学, 2007, 27(4):549-553. HUANG Jinliang, WANG Haochang, HE Wanqian, et al. Local sensitivity analysis for urban rainfall runoff modeling[J]. China Environmental Science, 2007,27(4):549-553. (in Chinese)
[38] U.S.EPA. Storm Water Pollution Program[R/OL]. 2008.[2009-01-29]. http://cfpub.epa.gov/npdes/home.cfm?program_id=6
[39] U.S.EPA. Storm Water Pollution Program[R/OL]. 2008.[2009-01-29]. http://cfpub.epa.gov/npdes/stormwater/menuofbmps/index.cfm
[40] Natural Resource Defense Council. Rooftops to rivers green strategies for controlling stormwater and combined sewer overflows[R]. June 2006:17-19.

备注/Memo

备注/Memo:
收稿日期:2018-12-25;改回日期:2019-03-11。
基金项目:陕西省教育厅自然科学专项(18JK0573)
作者简介:李静思(1990-),女,博士研究生,从事水文水资源与农业水资源利用研究.E-mail:692302520@qq.com
通讯作者:李山(1989-),男,讲师,博士,从事水资源管理与环境保护研究.E-mail:shanli@xaut.edu.cn
更新日期/Last Update: 1900-01-01