[1]陈巧菊,刘敏,黄国庆,等.龙卷风参数趋势性和相关性特征分析[J].自然灾害学报,2019,28(04):111-121.[doi:10.13577/j.jnd.2019.0412]
 CHEN Qiaoju,LIU Min,HUANG Guoqing,et al.Analysis of trend and correlation characteristics of tornado parameters[J].,2019,28(04):111-121.[doi:10.13577/j.jnd.2019.0412]
点击复制

龙卷风参数趋势性和相关性特征分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年04期
页码:
111-121
栏目:
出版日期:
2019-08-28

文章信息/Info

Title:
Analysis of trend and correlation characteristics of tornado parameters
作者:
陈巧菊1 刘敏2 黄国庆2 郑海涛1
1. 西南交通大学 数学学院, 四川 成都 611756;
2. 重庆大学 土木工程学院, 重庆 400045
Author(s):
CHEN Qiaoju1 LIU Min2 HUANG Guoqing2 ZHENG Haitao1
1. School of Mathematics, Southwest Jiao-tong University, Chengdu 611756, China;
2. School of Civil Engineering, Chongqing University, Chongqing 400045, China
关键词:
龙卷风参数趋势性检验空间相关性Pearson系数Moran’s I指数
Keywords:
tornado parameterstrend testspatial correlationPearson coefficientMoran’s I index
分类号:
P445;X43
DOI:
10.13577/j.jnd.2019.0412
摘要:
龙卷风参数的时空特性分析,对于了解龙卷风特征、致灾特性及龙卷风风灾评估等具有重要意义。本文结合Cox-Stuart和Mann-Kendall方法,对美国和中国龙卷风的年发生频次、年平均强度和年平均尺寸进行了趋势性检验。通过Pearson系数从整体上研究了不同地域龙卷风年频次的空间相关性特征,以及空间相关性与地理距离之间的关系;进一步采用Moran’s I指数度量了不同地域上龙卷风年频次的空间自相关性随时间变化的规律,分析了龙卷风发生的空间集聚性特征。结果表明:(1)美国龙卷风特征参数均表现出了逐年显著变化的趋势,中国龙卷风年频次具有减少趋势,而其他参数没有显著变化的趋势;(2)空间相关系数受到地形的影响,而不完全与空间距离成反比;(3)美国以州为单位分割下的龙卷风年频次的空间自相关关系逐年增强,龙卷风表现出逐年集聚的现象;不同空间距离下的中国龙卷风年频次的空间自相关关系逐年减弱,猜测中国龙卷风的发生在空间上越来越分散。
Abstract:
Analysis of the spatiotemporal characteristics of tornado parameters is of great significance for understanding the characteristics of tornadoes, the characteristics of disasters and the assessment of tornado disasters.Combined with Cox-Stuart and Mann-Kendall methods, the trends of annual frequency, average strength and annual average size of tornadoes in the United States and China are analyzed in this study.The spatial correlation characteristics of tornado annual frequency in different regions are studied based on Pearson coefficient, and the relationship between tornado frequency and geographical distance is investigated. Furthermore, Moran’s I index is used to measure the spatial auto correlation of tornadoes in different regions and also its variation with time, from which the spatial clustering characteristics of tornadoes are revealed.The results show that:(1) Characteristics parameters of tornado in United States have significant trend,the annual frequency of tornadoes in China has a decreasing trend, while other parameters have no significant trend. (2) The spatial correlation coefficient is affected by the topography, but not completely inversely proportional to the spatial distance. (3) The spatial autocorrelation of tornado frequency in the United States is increasing year by year, and the tornadoes show the phenomenon of gathering year by year. The spatial autocorrelation of the annual frequency of Chinese tornadoes at different spatial distances has been weakened year by year, and it is speculated that the occurrence of Chinese tornadoes is becoming more and more scattered in space. Correlation analysis of tornado characteristic parameters, provides the reference for understanding the temporal and spatial variation of tornadoes,and the establishment of probability model of tornado parameters.

参考文献/References:

[1] Tamura Y, Matsui M. Characteristics and risk analysis of tornadoes in Japan[C]//14th International Conference on Wind Engineering, Porto Alegre, Brazil, 21-26 June 2015.
[2] Moore T W. On the temporal and spatial characteristics of tornado days in the United States[J]. Atmospheric Research, 2017, 184:56-65.
[3] Brooks H E, Carbin G W, Marsh P T. Increased variability of tornado occurrence in the United States[J]. Science, 2014, 346(6207):349-352.
[4] 范雯杰, 俞小鼎. 中国龙卷的时空分布特征[J]. 气象, 2015, 41(7):793-805. FAN Wenjie, YU Xiaoding. The temporal and spatial distribution characteristics of Chinese tornado[J]. Meteorology, 2015,41(7):793-805.(in Chinese)
[5] Cheng V Y S. Probability of tornado occurrence across Canada[J]. Journal of Climate, 2013, 26(23):9415-9428.
[6] 王艳茹. 上海房地产价格的空间相关性及其影响因素分析[J]. 上海房地, 2018, 377(7):58-62. WANG Yanru. Spatial correlation of shanghai real estate price and its influencing factors[J]. Shanghai Real Estate, 2018, 377(7):58-62.(in Chinese)
[7] 武继磊, 王劲峰, 孟斌, 等. 2003年北京市SARS疫情空间相关性分析[J]. 浙江大学学报(农业与生命科学版), 2005, 31(1):97-101. WU Jilei, WANG Jinfeng, MENG Bin, et al. Spatial correlation analysis of SARS epidemic in Beijing in 2003[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2005, 31(1):97-101.(in Chinese)
[8] NOAA’s National Weather Service, Storm Prediction Center WCM Page[DB/OL]. https://www.spc.noaa.gov/wcm/.
[9] 高榕. 中国龙卷风特性统计分析及灾后建构筑物调查研究[D]. 北京:北京交通大学, 2018. GAO Rong. Statistical Analysis of Tornado Characteristics and Investigation of Post-Disaster Structures in China[D]. Beijing:Beijing Jiaotong University, 2018.(in Chinese)
[10] 吴喜之, 赵博娟. 非参数统计[M]. 北京:中国统计出版社, 2013. WU Xizhi, ZHAO Bojuan. Nonparametric Statistics[M]. Beijing:China Statistics Press, 2013.(in Chinese)
[11] Gocic M, Trajkovic S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia[J]. Global & Planetary Change, 2013, 100(1):172-182.
[12] 叶慈南, 曹伟丽.应用数理统计[M].北京:机械工业出版社, 2004. YE Cinan, CAO Weili. Application of Mathematical Statistics[M]. Beijing:Mechanical Industry Press, 2004.(in Chinese)
[13] Getis A, Ord J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 2010, 24(3):189-206.
[14] Sokal R R, Oden N L. Spatial autocorrelation in biology:1. Methodology[J]. Biological Journal of the Linnean Society, 2010, 10(2):199-228.
[15] 陶雨婷, 吴云清.基于Moran’s I指数的全国空气质量时空格局分析[J]. 自然灾害学报, 2018, 27(5):107-113. TAO Yuting, WU Yunqing. Spatial and temporal pattern analysis of national air quality based on Moran’s I Index[J]. Journal of Natural disasters, 2018, 27(5):107-113.(in Chinese)
[16] McCarthy D, Schaefer J. Tornado Trends over the Past Thirty Years[C]//In 14th Conference on Applied Meteorology, Preprints, Seattle, WA, American Meteorological Society 3.4.
[17] Changnon D, Stanley A. User beware:the upward trend in tornado frequencies[J]. Weatherwise, 1982, 35(2):64-69.

备注/Memo

备注/Memo:
收稿日期:2018-12-12;改回日期:2019-02-26。
基金项目:国家自然科学基金国际(地区)合作与交流项目(51720105005)
作者简介:陈巧菊(1993-),女,硕士研究生,主要从事时空计数数据分析方面的研究.E-mail:1326166594@qq.com
通讯作者:刘敏(1987-),男,博士后,主要从事建筑结构钝体空气动力学方面的研究.E-mail:liu.min@cqu.edu.cn
更新日期/Last Update: 1900-01-01