[1]高宇龙,郝进锋,孙建刚,等.滚动环梁与滑移垫层并联隔震的立式储罐振动台试验研究[J].自然灾害学报,2019,28(04):142-150.[doi:10.13577/j.jnd.2019.0415]
 GAO Yulong,HAO Jinfeng,SUN Jiangang,et al.Shaking table experimental study on vertical tank with rolling ring beam and sliding cushion parallel isolation[J].,2019,28(04):142-150.[doi:10.13577/j.jnd.2019.0415]
点击复制

滚动环梁与滑移垫层并联隔震的立式储罐振动台试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年04期
页码:
142-150
栏目:
出版日期:
2019-08-28

文章信息/Info

Title:
Shaking table experimental study on vertical tank with rolling ring beam and sliding cushion parallel isolation
作者:
高宇龙1 郝进锋1 孙建刚2 崔利富2 刘伟兵2 张庆高2
1. 东北石油大学 土木建筑工程学院, 黑龙江 大庆 163000;
2. 大连民族大学 土木工程学院, 辽宁 大连 116024
Author(s):
GAO Yulong1 HAO Jinfeng1 SUN Jiangang2 CUI Lifu2 LIU Weibing2 ZHANG Qinggao2
1. College of Civil Engineering, Northeast Petroleum University, Daqing 163000, China;
2. College of Civil Engineering, Dalian Minzu University, Dalian 116024, China
关键词:
振动台试验并联隔震储罐滚动环梁
Keywords:
shaking table testparallel isolationstorage tankrolling ring beam
分类号:
TU397;X948
DOI:
10.13577/j.jnd.2019.0415
摘要:
以滚动环梁与滑移垫层并联隔震基础为研究对象,进行了1/4储罐模型的地震动振动台试验研究。研究分2种工况模式,即:土体垫层非隔震基础形式和滚动环梁与具有弹性变形材料的滑移垫层的并联隔震基础形式。详细介绍了罐体设计、缩尺理论、隔震装置设计、测点布置和地震波输入等情况。并对非隔震和并联隔震模型的罐壁加速度,罐壁位移和罐壁应变对比得出了基本的结论。试验证明:并联隔震比非隔震具有更好的隔震效果,在El Centro波作用下,储罐罐壁加速度峰值减小了25%;金门波作用下减小了13%;Taft波作用下减小了40.98%;Pasadena波作用下可减小66.6%。在罐壁下部应力也有较好的减震率,可有效减少象足屈曲等破坏。
Abstract:
In this paper, the newly-designed rolling ring beam and sliding cushion parallel isolation foundation is taken as the research object, and the ground motion shaking-table test of storage tank in 1/4 scale is carried out. The research included three working modes, namely:pure rolling ring beam base isolation, rolling ring beam and soil-cushion foundation form and the basic form of rolling ring beam and sliding-cushion with elastic deformation material. The tank design, scale theory, isolation device design, measuring arrangement and seismic wave input are introduced in detail. Basic conclusions were made on tank wall acceleration, tank skin displacement and tank skin strain for non- isolation and parallel isolation models. Tests have shown that parallel isolation has better isolation effects than non-isolation:under the action of El Centro wave, the peak acceleration of the isolated tank skin is reduced by 25%; under the action of the Golden Gate wave, it is reduced by 13%; under the action of Taft wave, it is reduced by 40.98%; under the action of the Pasadena wave, it can be reduced by 66.6%. The strain in the lower part of the tank wall also has a good shock absorption rate, which can effectively reduce the damage such as buckling.

参考文献/References:

[1] Housner.G.W. Dynamic pressure on accelerated fluid containers[J]. Bull.Seism.Soc.Am,1957,47(1),15-35.
[2] 黄襄云, 王清敏, 丰定国, 等. 球支撑滚动隔震体系试验研究[J]. 华南建设学院西院学报, 1999(3):11-16. HUANG Xiangyun, WANG Qingmin, FENG Dingguo, et al. Experimental study on ball-supported rolling isolated system[J]. Journal of South China Construction University, 1999(3):11-16.(in Chinese)
[3] Chalhoub M.S., Kelly J.M. Theoretical and experimental studies of cylindrical water tanks in base isolated structures[R]. A Report no. UCB/EERC-88/07, USA, Berkeley 1988.
[4] Kim Y.W., Lee Y.S. Coupled vibration analysis of liquid-filled rigid cylindrical storage tank with an annular plate cover[J]. Journal of Sound and Vibration, 2005, 279(1-2):217-235.
[5] Wang Y.P., Teng M.C., Chung K.W. Seismic isolation of rigid cylindrical tanks using friction pendulum bearing[J]. Earthquake Engineering and Structural Dynamics, 2001,30(7):1083-1099.
[6] Shrimali M.K., Jangid R.S. Earthquake response of isolated elevated liquid storage steel tanks[J].Journal of Constructional Steel Research,2003, 59(10):1267-1288.
[7] Emre Abal, ErenUc-kan. Parametric analysis of liquid storage tanks base isolated by curved surface sliding bearings[J]. Soil Dynamics and Earthquake Engineering, 2010,30(1-2):21-31.
[8] Shekari M.R., Khaji N., Ahmadi M.T. On the seismic behavior of cylindrical base-isolated liquid storage tanks excited by long-period ground motions[J]. Soil Dynamics and Earthquake Engineering, 2010,30(10):968-980.
[9] 孙建刚,郝进锋,张文福, 等. 采用滚动隔震体系的立式储液罐(敞口)振动的模型试验研究[J]. 大庆石油学院学报, 1998(3):103-107, 114. SUN Jiangang, HAO Jinfeng, ZHANG Wenfu, et al. Model test study on vibration of vertical liquid storage tank (open) using rolling isolation system[J]. Journal of Northeast Petroleum University, 1998(3):103-107, 114.(in Chinese)
[10] 孙建刚, 吕睿, 郝进锋.立式储液容器自复位隔震体系的研究[J].地震工程与工程振动,2000(1):141-148. SUN Jiangang, LV Rui, HAO Jinfeng. Study of auto-recovering isolation system[J]. Earthquake Engineering and Engineering Dynamics, 2000(1):141-148.(in Chinese)
[11] 赵长军. LNG储罐滚动自复位隔震研究[D].东北石油大学,2011. ZHAO Changjun. Research on Base Isolation of LNG Storage Tanks with Resilience Rolling Isolator[D]. Northeast Petroleum University, 2011.(in Chinese)
[12] 孙建刚,崔利富,王振, 等.立式储罐滚动隔震地震模拟振动台试验研究[J].地震工程与工程振动,2016,36(6):92-101. SUN Jiangang, CUI Lifu, WANG Zhen. Earthquake simulated shaking table test of vertical tank with rolling isolation[J]. Earthquake Engineering and Engineering Dyamics, 2016,36(6):92-101.(in Chinese)
[13] 崔利富, 孙建刚, 李想, 等.立式储罐钢筋环梁基础隔震模拟振动台试验研究[J].地震工程与工程振动,2016,36(4):130-138. CUI Lifu, SUN Jiangang, LI Xiang, et al. Simulation shaking table test of vertical storage tank with reinforcement ring beam base isolation[J]. Earthquake Engineering and Engineering Dynamics, 2016,36(4):130-138.(in Chinese)
[14] 冯先超.环梁基础并联隔震储罐地震响应研究[D].河南工业大学,2018. FENG Xianchao. Research on Seismic Response of Parallel-Isolated Isolated Tanks with Ring Beam Foundation[D]. Henan University of Technology,2018.(in Chinese)

相似文献/References:

[1]刘红彪,王梅,张强.正弦扫频振动台试验的虚拟设计[J].自然灾害学报,2014,23(01):252.[doi:10.13577/j.jnd.2014.0134]
 LIU Hongbiao,WANG Mei,ZHANG Qiang.Virtual design of shaking table test in sine-swept vibration[J].,2014,23(04):252.[doi:10.13577/j.jnd.2014.0134]
[2]曹万林,张思,周中一,等.基础滑移隔震土坯组合砌体结构振动台试验[J].自然灾害学报,2015,24(06):131.[doi:10.13577/j.jnd.2015.0616]
 CAO Wanlin,ZHANG Si,ZHOU Zhongyi,et al.Shake table test study on composite adobe masonry structure with sliding base isolation[J].,2015,24(04):131.[doi:10.13577/j.jnd.2015.0616]
[3]卢俊龙,张荫.三向地震作用下密肋复合墙结构模型振动台试验研究[J].自然灾害学报,2017,26(06):077.[doi:10.13577/j.jnd.2017.0609]
 LU Junlong,ZHANG Yin.Shake table test on dynamic response of multi-ribbed wall structure model excited by tri-dimension earthquake wave[J].,2017,26(04):077.[doi:10.13577/j.jnd.2017.0609]
[4]李雪红,梁陈,徐秀丽,等.多层立交隧道复杂节点结构地震响应特性分析[J].自然灾害学报,2018,27(02):074.[doi:10.13577/j.jnd.2018.0209]
 LI Xuehong,LIANG Chen,XU Xiuli,et al.Analysis of seismic response of complex multi-layer tunnel node structure[J].,2018,27(04):074.[doi:10.13577/j.jnd.2018.0209]
[5]关振长,徐遒,邓涛.浅埋偏压条件下特大断面隧道地震动态响应的试验研究[J].自然灾害学报,2018,27(03):068.[doi:10.13577/j.jnd.2018.0308]
 GUAN Zhenchang,XU Qiu,DENG Tao.Seismic responses of large section tunnelwith shallow cover and unsymmetrical loading[J].,2018,27(04):068.[doi:10.13577/j.jnd.2018.0308]
[6]刘子心,刘章军.剪力墙结构振动台试验的概率密度演化分析[J].自然灾害学报,2018,27(04):137.[doi:10.13577/j.jnd.2018.0418]
 LIU Zixin,LIU Zhangjun.Probability density evolution analysis of a shear-wall structure by shaking table test[J].,2018,27(04):137.[doi:10.13577/j.jnd.2018.0418]
[7]沈吉荣,王志华,林文品,等.液化土体侧向扩展条件下群桩动力响应振动台模型试验[J].自然灾害学报,2018,27(06):027.[doi:10.13577/j.jnd.2018.0604]
 SHEN Jirong,WANG Zhihua,LIN Wenpin,et al.Shaking table test on the dynamic response of pile group under lateral spreading in liquefied ground[J].,2018,27(04):027.[doi:10.13577/j.jnd.2018.0604]
[8]王会娟,王平,于一帆,等.复杂土层结构黄土场地地震动反应特性[J].自然灾害学报,2018,27(06):075.[doi:10.13577/j.jnd.2018.0610]
 WANG Huijuan,WANG Ping,YU Yifan,et al.The effect of complex soil structure loess field on earthquake ground motion[J].,2018,27(04):075.[doi:10.13577/j.jnd.2018.0610]
[9]周永毅,张建经,曹礼聪,等.长大高耸结构的单桩基础振动台试验研究[J].自然灾害学报,2018,27(06):133.[doi:10.13577/j.jnd.2018.0617]
 ZHOU Yongyi,ZHANG Jianjing,CAO Licong,et al.Shaking table test research of single piles with towering structures[J].,2018,27(04):133.[doi:10.13577/j.jnd.2018.0617]
[10]盛涛,肖畅,李水明,等.砂袋垫层减隔震与抗液化性能振动台试验研究[J].自然灾害学报,2019,28(01):009.[doi:10.13577/j.jnd.2019.0102]
 SHENG Tao,XIAO Chang,LI Shuiming,et al.Shaking table test on the horizontal seismic isolation and anti-liquefaction performance of sandbag layers[J].,2019,28(04):009.[doi:10.13577/j.jnd.2019.0102]

备注/Memo

备注/Memo:
收稿日期:2018-09-25;改回日期:2019-01-15。
基金项目:国家自然科学基金项目(51478090)
作者简介:高宇龙(1993-),男,硕士研究生,主要从事储罐灾害方面的研究.E-mail:gyl807667517@gmail.com
通讯作者:孙建刚(1959-),男,教授,博士生导师,主要从事储罐灾害方面的研究.E-mail:sjg728@126.com
更新日期/Last Update: 1900-01-01