[1]孔娟,张蕾,潘晓明.超高层建筑上部结构-群桩-筏板-土共同作用下筏板性状风振响应计算与分析[J].自然灾害学报,2019,28(06):101-109.[doi:10.13577/j.jnd.2019.0611]
 KONG Juan,ZHANG Lei,PAN Xiaoming.Calculation and analysis of super structure-piles-raft-soil interaction for raft bearing behavior of super tall buildings[J].,2019,28(06):101-109.[doi:10.13577/j.jnd.2019.0611]
点击复制

超高层建筑上部结构-群桩-筏板-土共同作用下筏板性状风振响应计算与分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
28
期数:
2019年06期
页码:
101-109
栏目:
出版日期:
2019-12-28

文章信息/Info

Title:
Calculation and analysis of super structure-piles-raft-soil interaction for raft bearing behavior of super tall buildings
作者:
孔娟1 张蕾2 潘晓明1
1. 深圳市地铁集团有限公司, 广东 深圳 518026;
2. 昆明理工大学 建筑工程学院, 云南 昆明 650500
Author(s):
KONG Juan1 ZHANG Lei2 PAN Xiaoming1
1. Shenzhen Metro Group Co., Ltd. Shenzhen 518026, China;
2. Department of Civil Engineering, Kunming University of Science and Technology, Kunming 650500, China
关键词:
超高层建筑风荷载共同作用筏板位移筏板弯矩
Keywords:
super tall buildingwind loadinteractionraft displacementraft bending moment
分类号:
TU4;X9
DOI:
10.13577/j.jnd.2019.0611
摘要:
风荷载是控制超高层建筑结构设计的主要因素。借助流体动力学采用大涡模拟方法,通过FLUENT和ABAQUS软件建立考虑风场和结构的流固耦合分析模型,运用MpCCI软件进行流固耦合面上的数据传递,以实现流体、固体相互作用。以国际上通用的风工程CAARC标准模型为对象,进行了考虑刚性基础和上部结构-群桩-筏板-土共同作用的风-结构流固耦合数值模拟计算和分析。结果表明:(1)本文方法计算结果与解析解基本一致,与前人的风洞试验和数值模拟结果基本一致;(2)流固耦合分析下,地下室侧面土体可抵抗一半以上风荷载在筏板处引起的附加弯矩,风荷载引起的筏板平均附加弯矩远小于自重产生的弯矩。计算方法和计算结果可以为风荷载作用下对地基基础的研究和流固耦合问题分析提供参考。
Abstract:
Wind load is the main factor controlling the structural design of super tall buildings. Combined with CFD and Large Eddy Simulation,fluid-structure interaction model is established in wind field by software FLUENT and ABAQUS, the data transfer of fluid-structure interactions is carried out by the software MpCCI. On the basis of international commonly used wind engineering model-CAARC standard architectural model, the three-dimensional numerical simulation of fluid-structure interaction of wind and structure are established and analyzed considering rigid foundation and super structure-piles-raft-soil as object research respectively. The results show that:(1) The calculated results of the method in this paper are basically consistent with the analytical solution, and with the results of wind tunnel test and numerical simulation carried by predecessors. (2) Through the fluid-solid coupling analysis, the soil mass at the side of the basement can resist more than half of the additional bending moment which caused by wind load on the raft, and the average additional bending moment of the raft caused by wind load is far less than that generated by gravity stress. The calculation methods and results can be considered as reference for the study on foundation under wind load and other fluid structure interaction analysis.

参考文献/References:

[1] Novak M, Hifnawy E L. Structural response to wind with soil structure interaction[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28(1-3):329-338.
[2] Solari G, Stura D. Effects of soil-structure interaction in the dynamic along-wind response of structures[C]//Proceedings of the International Conference Oil Environmental Forces on Engineering Structures, London, 1980:75-89.
[3] Solari G, Stura D. Dynamic alongwind response of a structural system including soil flexibility[C]//Proceedings of the International Conference, 1980(2):735-745.
[4] 范存新, 曹新风, 唐和生. 具有埋入式基础的高层建筑考虑土-结构相互作用时的风振响应[J]. 沈阳建筑大学学报(自然科学版), 2014, 30(2):235-241. FAN Cunxin, CAO Xinfeng, TANG Hesheng. Research on responses of high-rise building with an embedded base to wind-induced vibration considering soil-structure interaction[J]. Journal of Shenyang Jianzhu University (Natural Science), 2014, 30(2):235-241.(in Chinese)
[5] 巢斯, 赵锡宏, 张保良, 等. 超高层建筑桩筏基础的桩顶反力计算研究[J]. 岩土力学, 2011, 32(4):1138-1142. CHAO Si, ZHAO Xihong, ZHANG Baoliang, et al. Study of computation of pile to of piled raft foundation for superhigh buildings[J]. Rock and Soil Mechanics, 2011, 32(4):1138-1142. (in Chinese)
[6] 巢斯, 赵锡宏, 张保良, 等. 控制超高层建筑桩筏基础筏板弯矩的方法[J]. 建筑结构, 2010, 40(3):40-44. CHAO Si, ZHAO Xihong, ZHANG Baoliang, et al. Controlled method of moment in raft of piled raft foundation fot super-tall buildings[J]. Building Structure, 2010, 40(3):40-44. (in Chinese)
[7] 建筑结构荷载规范(GB50009-2001)[S]. 中华人民共和国住房和城乡建设部. 北京:中国建筑工业出版社, 2002. Load Specification for Building Structures (GB50009-2001)[S]. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Beijing:China Architecture & Building Press, 2002. (in Chinese)
[8] 黄本才, 汪丛军. 结构抗风分析原理及应用(第二版)[M]. 上海:同济大学出版社, 2008. HUANG Bencai, WANG Congjun. Principle and Application of Structural Wind Resistance[M]. Shanghai:Tongji University Press, 2008. (in Chinese)
[9] 王福军. 计算流体动力学分析CFD软件原理与应用[M]. 北京:清华大学出版社, 2004. WANG Fujun. Principle and Application of CFD Software for Computational Fluid Dynamics Analysis[M]. Beijing:Qinghua University Press, 2004. (in Chinese)
[10] 孙瑛, 孙晓颖, 曹曙阳,译.建筑风荷载流体计算指南[M]. 北京:中国建筑工业出版社, 2010. SUN Ying, SUN Xiaoying, CAO Shuyang. Guide for Fluid Calculation of Building Wind Loads[M]. Beijing:China Architecture & Building Press, 2010. (in Chinese)
[11] 郑朝荣. 高层建筑风荷载吸-吹气控制的数值模拟研究[D]. 哈尔滨:哈尔滨工业大学, 2010. ZHENG Chaorong. Numerical Simulation Study on the Control of Air Suction and Air Blowing for High-Rise Buildings[D]. Harbin:Harbin Institute of Technology, 2010. (in Chinese)
[12] Hibbitt H D, Karlson B I, Sorenson S. ABAQUS Theory Manual[M]. Rhode Island:Pawtucket RI, 2002.
[13] Tang U F, Kwok K C S. Interference excitation mechanisms on a 3DOF aeroelastic CAARC building model[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(14):1299-1314.
[14] 李安勇, 陈镕, 薛松涛. 高层建筑风振时地基土材料阻尼比取值范围的初探[J]. 力学季刊, 2008, 29(3):455-463. LI Anyong, CHEN Rong, XUE Songtao. Preliminary study of material damping ratio range for foundation soil of high rise building under wind induced vibration[J]. Chinese Quarterly of Mechanics, 2008, 29(3):455-463. (in Chinese)
[15] 李安勇. 土-结构相互作用对高层建筑结构风振响应的影响[D]. 上海:同济大学, 2008. LI Anyong. Effect of Soil-Structure Interaction on Wind Vibration Response for High-Rise Buildings[D]. Shanghai:Tongji University, 2008. (in Chinese)
[16] Alexandre L B, Armando M A. Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using num erical simulation[J]. Computers and Structures, 2009(87):564-581.

相似文献/References:

[1]李正农,宫博,卢春玲,等.低矮建筑物的抗风研究现状[J].自然灾害学报,2007,16(06):115.
 LI Zheng-nong,GONG Bo,LU Chun-ling,et al.Status quo of research on wind-resistance of low-rise buildings[J].,2007,16(06):115.
[2]李宏男,王杨,伊廷华.极值风速概率方法研究进展[J].自然灾害学报,2009,18(02):015.
 LI Hong-nan,WANG Yang,YI Ting-hua.Advance in research on extreme wind speed models[J].,2009,18(06):015.
[3]董军,毛黎明,季克和.复杂环境中玻璃幕墙设计风压风洞试验[J].自然灾害学报,2009,18(06):175.
 DONG Jun,MAO Li-ming,JI Ke-he.Wind tunnel test for design wind pressure of glass curtain wall in complex environment[J].,2009,18(06):175.
[4]杨小兵,孔繁胜,李正农.超高层建筑风致响应中的数据挖掘[J].自然灾害学报,2005,14(02):099.
 YANG Xiao-bin,KONG Fan-sheng,LI Zheng-nong.Data mining in response of super tall building to wind load[J].,2005,14(06):099.
[5]彭兴黔,吴桢,施维娟,等.福建方形土楼屋盖结构的风灾损伤研究[J].自然灾害学报,2014,23(03):076.[doi:10.13577/j.jnd.2014.0310]
 PENG Xingqian,WU Zhen,SHI Weijian,et al.Research on windstorm damage to roof structure of Fujian’s square earth buildingsj[J].,2014,23(06):076.[doi:10.13577/j.jnd.2014.0310]
[6]周利芬,吴红华,李正农.树木抗风及对风环境影响的研究综述[J].自然灾害学报,2015,24(05):199.[doi:10.13577/j.jnd.2015.0522]
 ZHOU Lifen,WU Honghua,LI Zhengnong.Review of research on trees’ wind resistance and effects on wind environment[J].,2015,24(06):199.[doi:10.13577/j.jnd.2015.0522]
[7]李宏海,欧进萍.我国下击暴流的时空分布特性[J].自然灾害学报,2015,24(06):009.[doi:10.13577/j.jnd.2015.0602]
 LI Honghai,OU Jinping.Spatiotemporal distribution characteristics of downburst in China[J].,2015,24(06):009.[doi:10.13577/j.jnd.2015.0602]
[8]崔铁军,马云东.地震下超高层建筑非连续性坍塌模拟及特征研究[J].自然灾害学报,2016,25(05):142.[doi:10.13577/j.jnd.2016.0517]
 CUI Tiejun,MA Yundong.Modelling and characteristic research on earthquake induced discontinuous collapse of high-rise buildings[J].,2016,25(06):142.[doi:10.13577/j.jnd.2016.0517]
[9]李宏男,徐良.风雨共同作用下斜拉桥横桥向反应特性研究[J].自然灾害学报,2017,26(05):001.[doi:10.13577/j.jnd.2017.0501]
 LI Hongnan,XU Liang.Study on the reaction characteristics of cable-stayed bridge under the combined loads of wind and rain[J].,2017,26(06):001.[doi:10.13577/j.jnd.2017.0501]
[10]王军,曾宪桃,刘杰,等.风振响应风电机组基础-土体结构蠕变稳定分析[J].自然灾害学报,2019,28(03):141.[doi:10.13577/j.jnd.2019.0316]
 WANG Jun,ZENG Xiantao,LIU Jie,et al.Creep stability of foundation-soil structure in wind turbine under wind-induced vibration[J].,2019,28(06):141.[doi:10.13577/j.jnd.2019.0316]

备注/Memo

备注/Memo:
收稿日期:2019-02-25;改回日期:2019-06-12。
基金项目:国家自然科学基金项目(51408283)
作者简介:孔娟(1984-),女,博士,主要从事地下工程方面的研究.E-mail:757030485@qq.com
通讯作者:张蕾(1979-),女,讲师,博士,主要从事桩基础及地基处理方面的研究.E-mail:zl5359@163.com
更新日期/Last Update: 1900-01-01