[1]朱才辉,吴宏,段宇,等.浅埋软岩隧道顶板潜在滑移面特征及工程应用[J].自然灾害学报,2020,29(02):022-34.[doi:10.13577/j.jnd.2020.0203]
 ZHU Caihui,WU Hong,DUAN Yu,et al.Potential slip surface feature and its engineering application of roof strata in weak and shallow buried tunnel[J].,2020,29(02):022-34.[doi:10.13577/j.jnd.2020.0203]
点击复制

浅埋软岩隧道顶板潜在滑移面特征及工程应用
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年02期
页码:
022-34
栏目:
出版日期:
2020-04-28

文章信息/Info

Title:
Potential slip surface feature and its engineering application of roof strata in weak and shallow buried tunnel
作者:
朱才辉1 吴宏1 段宇1 贺红2
1. 西安理工大学 岩土工程研究所, 陕西 西安 710048;
2. 中铁城市发展投资集团有限公司, 陕西 西安 710013
Author(s):
ZHU Caihui1 WU Hong1 DUAN Yu1 HE Hong2
1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an 710048, China;
2. China Railway City Development and Investment Group Co. LTD, Xi’an 710013, China
关键词:
浅埋软岩隧道顶板潜在滑移面Peck曲线张拉剪切破坏
Keywords:
soft and shallow buried tunnelroof stratapotential slip surface (PSS)Peck curvetension-shear failure
分类号:
TU398+.9;X9
DOI:
10.13577/j.jnd.2020.0203
摘要:
浅埋软岩隧道顶板潜在滑移面的合理确定对于围岩压力计算及支护结构设计极为重要。本文基于隧道开挖诱发地层不均匀变形特征与顶板岩层发生张拉剪切破坏的关系,采用Peck曲线方法和数值方法来确定顶板潜在滑移面特征,进而研究了隧道覆跨比、围岩参数变化对滑移面特性的影响,并应用于实际工程。结果表明:(1)基于Peck曲线和数值分析方法来确定浅埋隧道顶板岩层潜在滑移面的形态与实测结果一致;(2)浅埋隧道顶板岩层的等效破裂角仅在围岩黏聚强度较低条件下才符合45°+φ/2,围岩级别越好,破坏范围越小,滑移面形态呈平缓的"S"型;围岩越差,破坏范围越大,滑移面形态呈竖直的"椭圆"型。随着隧道覆跨比、侧压力系数及抗剪强度指标的增大,等效破裂角呈减小趋势。地表开裂点随着覆跨比和侧压力系数增大而逐渐远离隧道轴线,随着岩体强度指标的增大而逐渐向隧道轴线迁移。
Abstract:
The reasonable determination of the potential slip surface (PSS) of tunnel roof in the shallow buried soft rock is extremely important for the calculation of surrounding rock pressure and the design of supporting structure. In this work, based on the relationship between the inhomogeneous deformation characteristics induced by tunnel excavation and the tensile-shear failure of the roof stratum, the Peck curve method and numerical method are used to determine the characteristics of the PSS of the roof, and then the influence factors of overburden-span ratio, rock parameters variation on the PSS are analyzed and applied to the engineering practice. The research results show that: (1) Based on the Peck curve method and numerical analysis method, the shape of PSS of the shallow buried tunnel roof is consistent with the measured results. (2)The equivalent rupture angle of the shallow tunnel roof meets 45°+φ/2 only in the surrounding rock with low cohesion strength; the better the grade of surrounding rock is, the smaller the damage range is, and the shape of PSS is smooth "S" type; the worse the surrounding rock is, the larger the damage range is, and the shape of PSS is vertical "elliptical" type. With the increasing of the tunnel span ratio, the lateral pressure coefficient and the shear strength indexes, the equivalent rupture angle shows a decreasing trend. With the overburden-span ratio and lateral pressure coefficient increasing, the surface crack point gradually moves away from the tunnel axis; with the increasing of rock mass strength, surface crack point gradually migrates toward the tunnel axis.

参考文献/References:

[1] 郑颖人,朱合华,方正昌,等. 地下工程围岩稳定性分析与设计理论[M]. 北京:人民交通出版社,2012. ZHENG Yingren, ZHU Hehua, FANG Zhengchang, et al. Stability Analysis and Design Theories of Surrounding Rock in Underground Engineering[M]. Beijing:China Communications Press,2012.(in Chinese)
[2] Kumar P. Infinite elements for numerical analysis of underground excavations[J]. Tunnelling and Underground Space Technology, 2000, 15(1):117-124.
[3] 朱合华. 边界元法及其在岩土工程中的运用[M]. 上海:同济大学出版社,1997. ZHU Hehua. Boundary Element Method and Application of Geotechnical Engineering[M]. Shanghai:Tongji University Press,1997.(in Chinese)
[4] 孟云伟,肖世洪,柴贺军,等. 隧道开挖中破碎带支护的颗粒离散元模拟研究[J]. 地下空间与工程学报,2007, 3(4):673-677. MENG Yunwei,XIAO Shihong,CHAI Hejun, et al.PFC simulation of timbering in fragment strip during tunnel excavation[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(4):673-677.(in Chinese)
[5] 魏龙海,王明年. 碎石土隧道自稳性的三维离散元分析[J]. 岩土力学, 2008, 29(7):1853-1862. WEI Longhai, WANG Mingnian. Stability analysis of gravel soil tunnel by three-dimensional discrete element method[J].Rock and Soil Mechanics, 2008, 29(7):1853-1862.(in Chinese)
[6] 张志国,肖明. 地下洞室监测位移场的反演和围岩稳定评价分析[J]. 岩石力学与工程学报, 2009, 28(4):0813-0818. ZHANG Zhiguo, XIAO Ming. Inversion of monitored displacement field and evaluation of surrounding rock stability of underground caverns[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(4):813-818.(in Chinese)
[7] 汪成兵,朱合华. 隧道塌方机制及影响因素离散元模拟[J]. 岩土工程学报, 2008, 30(3):450-456. WANG Chengbing, ZHU Hehua.Tunnel collapse mechanism and numerical analysis of its influencing factors[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3):450-456.(in Chinese)
[8] 高峰, 唐星,李星, 等.基于UDEC离散元法的隧道塌方特征分析[J]. 重庆交通大学学报(自然科学版), 2018,37(1):24-28. GAO Feng, TANG Xing, LI Xing, et al. Tunnel collapse characteristics based on UDEC discrete element method[J]. Journal of Chongqing Jiaotong University (Natural Science), 2018,37(1):24-28.(in Chinese)
[9] 张黎明,郑颖人,王在泉,等. 有限元强度折减法在公路隧道中的应用探讨[J]. 岩土力学, 2007, 28(1):97-102. ZHANG Liming, ZHENG Yingren, WANG Zaiquan, et al. Application of strength reduction finite element method to road tunnels[J]. Rock and Soil Mechanics, 2007, 28(1):97-102.(in Chinese)
[10] 张佳华,杨小礼,梁桥,等. 非偏压与偏压条件下浅埋隧道围岩压力的极限分析[J].公路交通科技, 2014, 31(5):115-123. ZHANG Jiahua, YANG Xiaoli, LIANG Qiao, et al. On limit analysis of surrounding rock pressure on shallow tunnel under non-bias and bias conditions[J]. Journal of Highway and Transportation Research and Development, 2014, 31(5):115-123.(in Chinese)
[11] 罗伟,赵炼恒,李亮,等. 考虑隧底隆起斜坡段浅埋隧道稳定性上限分析[J]. 土木建筑与环境工程, 2015, 37(2):79-84. LUO Wei, ZHAO Lianheng, LI Liang, et al. Stability analysis on shallow tunnel with floor lift under inclined ground by upper bound method[J].Journal of Civil, Architectural and Environmental Engineering, 2015, 37(2):79-84.(in Chinese)
[12] 李宁,朱才辉,姚显春,等.一种浅埋软弱围岩稳定性离散化有限元分析方法探讨[J].岩石力学与工程学报,2009,28(增2):3533-3542. LI Ning,ZHU Caihui, YAO Xianchun, et al. Stability analysis of loose surrounding rock with shallow overburden by a discretization finite element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2):3533-3542.(in Chinese)
[13] 李宁,曲星,姚显春,等. 浅埋软弱围岩中有限元方法应用的进一步研究[J]. 岩土工程学报,2012,34(8):1475-1482. LI Ning, QU Xing, YAO Xianchun, et al. Further researches on finite element method in tunnels with shallow overburden and loosen rock mass[J]. Chinese Journal of Geotechnical Engineering,2012,34(8):1475-1482.(in Chinese)
[14] 王兵,谢锦昌. 偏压隧道模型试验及可靠度分析[J]. 工程力学, 1998, 15(1):85-93. WANG Bing, XIE Jinchang. Model test and reliability analysis for an unsymmetrically loaded tunnel[J]. Engineering Mechanics, 1998, 15(1):85-93.(in Chinese)
[15] 张成平,韩凯航,张顶立. 城市软弱围岩隧道塌方特征及演化规律试验研究[J]. 岩石力学与工程学报, 2014(12):2433-2442. ZHANG Chengping,HAN Kaihang,ZHANG Dingli. Test study of collapse characteristics of tunnels in soft ground in urban areas[J].Chinese Journal of Rock Mechanics and Engineering, 2014(12):2433-2442.(in Chinese)
[16] 杨忠民, 高永涛, 吴顺川, 等.隧道大变形机制及处治关键技术模型试验研究[J].岩土力学,2018,39(12):1-11. YANG Zhongmin, GAO Yongtao, WU Shunchuan, et al. Physical model test for tunnel large deformation mechanism and key techniques for treatment[J]. Rock and Soil Mechanics, 2018,39(12):1-11.(in Chinese)
[17] Bartlomiej Dziuban, Hoe I. Ling, Liming Li. Failure Mechanisms of shallow tunnel in sandy ground[J]. Transp. Infrastruct. Geotech, 2018, 5:318-331.
[18] Liu N, Li N, Li G. et al. Deformation and collapse mechanisms of water-rich soil tunnels[J]. Soil Mech Found Eng, 2018, 54(6):384-394.
[19] 汪成兵,朱合华.隧道围岩渐进性破坏机理模型试验方法研究[J].铁道工程学报,2009,11(3):48-53. WANG Chengbing,ZHU Hehua. Study on the test Method for progressive failure mechanism of the surrounding rock of tunnel with model[J].Journal of Railway Engineering Society,2009,11(3):48-53.(in Chinese)
[20] 刘俊,刘新荣,赖勇,等. 不同覆跨比下浅埋软弱隧道的破坏模式[J]. 中南大学学报(自然科学版), 2016, 47(5):1744-1751. LIU Jun, LIU Xinrong, LAI Yong, et al. Failure mode of shallow-buried weak tunnel under different thickness-span ratios[J]. Journal of Central South University (Science and Technology), 2016, 47(5):1744-1751.(in Chinese)
[21] Kaihang Han, Jiann Wen Woody Ju, Heng Kon,et al. Functional catastrophe analysis of progressive failures for deep tunnel roof considering variable dilatancy angle and detaching velocity[J]. Rock Mechanics and Rock Engineering, 2019, 52(10):3987-3997.
[22] 叶朝良. 黄土隧道施工地表裂缝形成机理及控制技术研究[D].西南交通大学, 2012. YE Chaoliang. Study on the Formation Mechanism of Ground Fissure During Loess Tunnel Construction and Its Control Technology[D]. Southwest Jiaotong University, 2012.(in Chinese)
[23] Xinqiang Gao, Yongquan ZHU, Chaoliang YE. Survey and analysis of the regularity of the surface crack in the loess tunnel of special passenger line[J]. Applied Mechanics and Materials-Advances in Civil Engineering, 2011, 90-93:2258-2264.
[24] Su M, Wang P, Xue Y, et al. Prediction of risk in submarine tunnel construction by multifactor analysis:A collapse prediction model[J]. Marine Georesources & Geotechnology,2019, 37(9):1119-1129.
[25] 张晓今, 钟毫忠, 张超. 浅埋山岭隧道软岩段塌方原因分析及处理技[J]. 现代隧道技术,2018,55(2):201-207. ZHANG Xiaojin, ZHONG Haozhong, ZHANG Chao. Cause analysis and treatment measures of a collapse event for a shallow-buried mountain tunnel in soft rock[J]. Modern Tunnelling Technology, 2018,55(2):201-207.(in Chinese)
[26] TB 10003-2016铁路隧道设计规范[S]. 北京:中国铁道出版社,2016. TB 10003-2016 Code for Design on Tunnel of Railway[S]. Beijing:China Railway Publishing House, 2016.(in Chinese)
[27] 朱永全,宋玉香. 隧道工程[M].中国铁道出版社,2007. ZHU Yongquan, SONG Yuxiang. Tunnel Engineering[M].Beijing:China Railway Publishing House, 2007.(in Chinese)
[28] 杨峰. 浅埋隧道围岩稳定性的极限分析上限法研究[D]. 中南大学, 2009. YANG Feng. Investigation of Shallow Tunnel Stability Using Upper Bound Solution of Limit Analysis[D]. Central South University, 2009.(in Chinese)
[29] Osman A S, Mair R J, Bolton M D.On the kinematics of 2D tunnel collapse in undrained clay[J]. Geotechnique, 2006,56(9):585-595.
[30] Peck, P.B.. Deep excavations and tunneling in soft ground. Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering[C]//Mexico City:Sociedad Mexicana de Mecanica de Suelos A C,1969, 225-290.
[31] Mair, R.J., Taylor, R.N., and Bracegirdle, A. Subsurface settlement profiles above tunnels in clays[J]. Geotechnique, 1993,43(2):315-320.
[32] 韩煊. 隧道施工引起地层位移及建筑物变形预测的实用方法研究[D].西安:西安理工大学,2006. HAN Xuan. The Analysis and Prediction of Tunnelling-Induced Building Deformations[D]. Xi’an:Xi’an University of Technology,2006.(in Chinese)
[33] 关美荣,张浩森,李昀阳,等.高铁隧道施工对文物建筑影响的评估方法研究[J].自然灾害学报,2018,27(5):88-95. GUAN Meirong,ZHANG Haosen,LI Yunyang,et al.Research on the evaluation method of heritage conservation during high-speed railway tunnel construction[J]. Journal of Natural Disasters,2018, 27(5):88-95.(in Chinese)
[34] 闫静雅, 王如路. 上海软土地铁隧道沉降及横向收敛变形的原因分析及典型特征[J]. 自然灾害学报, 2018,27(4):178-187. YAN Jingya, WANG Rulu. Cause analysis and typical characteristics of settlement and transverse convergence deformation of metro tunnel in soft ground in Shanghai[J]. Journal of Natural Disasters, 2018,27(4):178-187.(in Chinese)
[35] 段绍伟,黄磊,鲍灶成,等.修正的Peck公式在长沙地铁隧道施工地表沉降预测中的应用[J].自然灾害学报,2015,24(1):164-169. DUAN Shaowei,HUANG Lei,BAO Zaocheng,et al.Application of modified Peck formula in surface subsidence prediction of Changsha subway tunnel construction[J]. Journal of Natural Disasters, 2015,24(1):164-169.(in Chinese)
[36] Caihui ZHU, Ning LI. Prediction and analysis of surface settlement due to shield tunneling for Xi’an Metro[J]. Canadian Getechnical Journal, 2017, 54:529-546.
[37] 陈胤. 圆形浅埋暗挖隧道破裂角及破坏模式研究[D]. 北京交通大学, 2015. CHEN Yin.The Study on Rupture Angles and Failure Modes of Circular Shallow-Buried Tunnels[D].Beijing Jiaotong University, 2015.(in Chinese)
[38] 罗禄森. 郑西客运专线大断面黄土隧道二次衬砌设计方法研究[D]. 西南交通大学,2008. LUO Lusen. Study on Secondary Support Design Method Large Cross-section Loess Tunnel in ZHENGZHOU-XI’AN Passenger Dedicated Railway LINE[D]. Southwest Jiaotong University, 2008.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-03-01;改回日期:2019-10-23。
基金项目:国家自然科学基金项目(51678484);陕西省黄土力学与工程重点实验室科研计划项目(16JS073)
作者简介:朱才辉(1983-),男,副教授,博士,主要从事黄土力学与工程、原位监测技术等方面的工作.E-mail:zhucaihui123@163.com
更新日期/Last Update: 1900-01-01