[1]张焱,邱海军,胡胜,等.黄土洞穴发育条件下滑坡土体性质及其稳定性分析[J].自然灾害学报,2020,29(02):064-75.[doi:10.13577/j.jnd.2020.0207]
 ZHANG Yan,QIU Haijun,HU Sheng,et al.Analysis of the properties and stability of landslide soil under the development conditions of loess caves[J].,2020,29(02):064-75.[doi:10.13577/j.jnd.2020.0207]
点击复制

黄土洞穴发育条件下滑坡土体性质及其稳定性分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年02期
页码:
064-75
栏目:
出版日期:
2020-04-28

文章信息/Info

Title:
Analysis of the properties and stability of landslide soil under the development conditions of loess caves
作者:
张焱12 邱海军123 胡胜123 王新刚34 杨冬冬12 曹明明1
1. 西北大学 城市与环境学院, 陕西 西安 710127;
2. 陕西省地表系统与环境承载力重点实验室, 陕西 西安 710127;
3. 西北大学地表系统与灾害研究院, 陕西 西安 710127;
4. 西北大学地质学系, 大陆动力学国家重点实验室, 陕西 西安 710069
Author(s):
ZHANG Yan12 QIU Haijun123 HU Sheng123 WANG Xingang34 YANG Dongdong12 CAO Mingming1
1. College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China;
2. Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi’an 710127, China;
3. Institute of Earth Surface System and Hazards, Northwest University, Xi’an 710127, China;
4. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
关键词:
滑坡体黄土洞穴物理力学性质原位入渗数值模拟
Keywords:
landslide bodyloess cavesphysical and mechanical propertiesin-situ infiltrationnumerical simulation
分类号:
P642.1;X43;X9
DOI:
10.13577/j.jnd.2020.0207
摘要:
黄土洞穴作为黄土高原区独特的地形地貌,其发生与滑坡特征密切相关,洞穴的发育和演化又受到土性、地层结构等因素影响。本文通过野外调查,在黄土洞穴群诱发的黄土滑坡上选择典型剖面进行室内外实验,分析了黄土洞穴发育条件下滑坡土体的物理力学性质,运用数值模拟探究了黄土洞穴对边坡稳定性影响。研究结果表明: 1) 北郭村滑坡洞穴区域土体的容重、抗剪强度大于非黄土洞穴区域,孔隙率小于非黄土洞穴区域;滑带土容重最大,孔隙率最小,抗剪强度最低。滑坡发生不久,滑坡体土为扰动土,各项土体参数尚不稳定;洞穴区域土体沉积时间久,土体性质稳定;滑带土各项土体参数与前两者相差较大。2) 研究区饱和导水率为0.2mm/min-1.3mm/min,滑坡后缘(洞穴区域)土体渗透系数小于滑坡体土(非洞穴区域)的渗透系数,孔隙率是影响入渗的主要因素;在滑坡后缘,黄土洞穴的渗透系数小于农田,有机质是影响入渗的主要因素。3)北郭村滑坡自然状态下稳定系数为0.7936,属于不稳定状态;洞穴状态下稳定系数0.7291,洞穴的存在降低了边坡的稳定性。
Abstract:
As an unique topography in the loess plateau area, the occurrence of loess cave is closely related to the characteristics of landslides, and the development and evolution of the caves are influenced by factors such as soil and stratigraphic structure. Through field investigation, some typical profiles were selected for indoor and outdoor experiments on the loess landslide induced by the loess cave groups, the physical and mechanical properties of the landslide soil under the development conditions of loess caves were analyzed, and the influence of loess caves on slope stability was explored by using numerical simulation. The results show that: 1) The bulk density and shear strength of the soil in the cave area of the Beiguo landslide are greater than that of the non-loess cave area, and the porosity is less than that of the non-loess cave area. The slip zone soil has the largest bulk density, the smallest porosity, and the lowest shear strength. Shortly after the landslide occurred, the landslide soil is a disturbed state and the parameters of the soil are not stable. The soil properties of the cave area are stable due to the long deposition time. The parameters of the soil of the slip zone are quite different from the first two. 2) The saturated hydraulic conductivity of the study area is 0.2mm/min~1.3mm/min. The permeability coefficient of the soil on the back edge of the landslide (cave area) is less than that of the landslide soil (non-cave area), and the porosity rate is the main factor affecting infiltration; at the back edge of the landslide, the permeability coefficient of loess caves is smaller than that of the farmland, and organic matter is the main factor affecting the infiltration. 3) The stability coefficient of the Beiguo landslide is 0.7936, which is belonged to the unstable state. The stability coefficient of the landslide in cave environment is 0.7291, and the existence of the cave reduces the stability of the slope.

参考文献/References:

[1] 刘东生. 黄土与环境[M]. 北京:科学出版社, 1985. LIU Dongsheng. Loess and Environment[M]. Beijing:China Ocean Press, 1985.(in Chinese)
[2] Derbyshire E, Mellors T W. Geological and geotechnical characteristics of some loess and loessic soils from China and Britain:a comparison[J]. Engineering Geology, 1988, 25(2-4):135-175.
[3] Qiu H, Cui P, Regmi A D, et al. The effects of slope length and slope gradient on the size distributions of loess slides:field observations and simulations[J]. Geomorphology, 2018,300(1):69-76.
[4] Qiu H, Cui P, Regmi A D, et al. Influence of topography and volume on mobility of loess slides within different slip surfaces[J]. Catena, 2017, 157:180-188.
[5] Tonglu, L I. Types of loess landslides and method for their movement forecast[J]. Journal of Engineering Geology, 2007, 15(4):500-505.
[6] 许领, 戴福初, 邝国麟, 等. 黄土滑坡典型工程地质问题分析[J]. 岩土工程学报, 2009, 31(2):287-293. XU Ling, DAI Fuchu, KUANG Guolin, et al. Analysis of some special engineering-geological problems of loess landslide[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2):287-293.(in Chinese)
[7] Zhang M, Yin Y. Dynamics, mobility-controlling factors and transport mechanisms of rapid long-runout rock avalanches in China[J]. Engineering Geology, 2013, 167(12):37-58.
[8] 胡胜, 邱海军, 王新刚, 等. 基于高分辨地形的黄土滑坡特征参数提取及其应用意义[J]. 第四纪研究, 2018, 38(2):367-379. HU Sheng, QIU Haijun, WANG Xingang, et al. Extracting characteristic parameters of loess landslides based on high-resolution topography and its application prospect[J]. Quaternary Sciences, 2018, 38(2):367-379.(in Chinese)
[9] 张江伟, 李小军, 迟明杰等. 滑坡灾害的成因机制及其特征分析[J]. 自然灾害学报, 2015, 24(06):42-49. ZHANG Jiangwei, LI Xiaojun, CHI Mingjie, et al. Analysis of formation mechanism and characteristics of landslide disasters[J]. Journal of Natural Disasters, 2015, 24(6):42-49.(in Chinese)
[10] Peng J, Sun P, Igwe O, et al. Loess caves, a special kind of geo-hazard on loess plateau northwestern China[J]. Engineering Geology, 2018, 236:79-88.
[11] Fuller M L. Some unusual erosion features in the loess of China[J]. Geographical Review, 1922, 12(4):570-584.
[12] Luce C.H, Wemple B.C. Introduction to special issue on hydrologic and geomorphic effects of forest roads[J]. Earth Surface Processes and Landforms:The Journal of the British Geomorphological Research Group, 2001, 26(2):111-113.
[13] Rahardjo H, Li X.W., Toll D.G., et al. The effect of antecedent rainfall on slope stability[J]. Geotechnical and Geological Engineering, 2001, 19(3-4):371-399.
[14] Jungerius P.D., Matundura J, Van De Ancker J A M. Road construction and gully erosion in West Pokot, Kenya[J]. Earth Surface Processes and Landforms, 2002, 27(11):1237-1247.
[15] 王斌科, 朱显谟, 唐克丽. 黄土高原的洞穴侵蚀与防治[J]. 水土保持研究, 1988(1):26-39. WANG Binke, ZHU Xianmo, TANG Keli. Tunnel erosion and its control in the loess plateau[J]. Research of Soil and Water Conservation, 1988(1):26-39.(in Chinese)
[16] 王景明, 倪玉兰, 孙建中. 黄土构造节理研究及其应用[J]. 工程地质学报, 1994, 2(4):31-42. WANG Jingming, NI Yulan, SUN Jianzhong. A study on structural joints in loess and its practical applications[J]. Journal of Engineering Geology, 1994, 2(4):31-42.(in Chinese)
[17] 李喜安. 黄土暗穴的成因及其公路工程灾害效应研究[D]. 长安大学, 2004. LI Xi’an. Causes of Loess Hidden Caves and Study on Disaster Effect of Highway Engineering[D]. Chang’an University, 2004.(in Chinese)
[18] 李喜安, 彭建兵, 郑书彦, 等. 黄土高原地区黄土洞穴的成因研究[J]. 公路, 2005(11):142-146. LI Xi’an, PENG Jianbing, ZHENG Shuyan, et al. A study on origin of loess caves in loessal plateau[J]. Highway, 2005(11):142-146.(in Chinese)
[19] 彭建兵, 李喜安, 陈志新, 等. 公路黄土暗穴分布规律研究[J]. 公路交通科技, 2005, 22(6):5-9. PENG Jianbing, LI Xi’an, CHEN Zhixin, et al. Study of distribution regularities on highway loess hidden holes[J]. Journal of Highway and Transportation Research and Development, 2005, 22(6):5-9.(in Chinese)
[20] 李喜安, 宋焱勋, 叶万军. 黄土洞穴潜蚀工程地质[M]. 同济大学出版社, 2010. LI Xi’an, SONG Yanxun, YE Wanjun. Engineering Geological Rearch on Tunnel-erosion in Loess[M]. Tongji University Press, 2010.(in Chinese)
[21] 彭建兵, 李喜安, 孙萍, 等. 黄土洞穴的环境灾害效应[J]. 地球与环境, 2005, 33(4):1-7. PENG Jianbing, LI Xi’an, SUN Ping, et al. Environmental and disaster effects of loess caves[J]. Earth and Environment, 2005, 33(4):1-7.(in Chinese)
[22] Smalley I, Ken O’Hara-Dhand, Wint J, et al. Rivers and loess:The significance of long river transportation in the complex event-sequence approach to loess deposit formation[J]. Quaternary International, 2009, 198(1):7-18.
[23] 李治财, 刘高. 滑坡体上黄土洞穴的发育特征及其成因机制[J]. 中国水土保持, 2014(4):60-63,69. LI Zhicai, LIU Gao. Developmnet caracteristic of loess caves on landslides and its formation mechanism[J]. Soil and Water Conversation in China, 2014(4):60-63,69.(in Chinese)
[24] 许元珺, 谷天峰, 王家鼎, 等. 黄土裂隙的漫灌效应对斜坡稳定性的影响分析[J]. 水文地质工程地质, 2017, 44(4):153-159. XU Yuanjun, GU Tianfeng, WANG Jiading, et al. An analysis of the influence of the loess fissures flooding effect on slope stability[J]. Hydrogeology & Engineering Geology, 2017, 44(4):153-159.(in Chinese)
[25] Chen J, Dai F, Xu L, et al. Properties and microstructure of a natural slip zone in loose deposits of red beds, southwestern China[J]. Engineering Geology, 2014, 183:53-64.
[26] Lassabatère L, Angulo-Jaramillo R, Soria Ugalde J M, et al. Beerkan estimation of soil transfer parameters through infiltration experiments-BEST[J]. Soil Science Society of America Journal, 2006, 70(2):521-532.
[27] Reynolds W D, Elrick D E. A method for simultaneous in situ measurement in the vadose zone of field-saturated hydraulic conductivity, sorptivity and the conductivity-pressure head relationship[J]. Groundwater Monitoring & Remediation, 2010, 6(1):84-95.
[28] 毕小勇, 闫天俊, 鲁杰. Midas-GTS(SRM)在边坡二维稳定性分析中的运用[J].自然灾害学报, 2015, 24(1):170-176. BI Xiaoyong, YAN Tianjun, LU Jie. Application of Midas-GTS(SRM) to 2D stability analysis of slope[J]. Journal of Natural Disasters, 2015, 24(1):170-176.(in Chinese)
[29] Leng Y, Peng J, Wang Q, et al. A fluidized landslide occurred in the loess plateau:a study on loess landslide in south Jingyang tableland[J]. Engineering Geology, 2018, 236:129-136.
[30] Zhou Y F, Tham L G, Yan W M, et al. Laboratory study on soil behavior in loess slope subjected to infiltration[J]. Engineering Geology, 2014, 183:31-38.
[31] Casanova M, Messing I, Joel A. Influence of aspect and slope gradient on hydraulic conductivity measured by tension infiltrometer[J]. Hydrological Processes, 2015, 14(1):155-164.
[32] Rawls W J, Nemes A, Pachepsky Y. Effect of soil organic carbon on soil hydraulic properties[J]. Developments in Soil Science, 2004, 30(4):95-114.
[33] 税伟, 白剑平, 简小枚. 若尔盖高原沙化草地治理区固碳能力研究[J]. 自然灾害学报, 2016, 25(6):42-50. SHUI Wei, BAI Jianping, JIAN Xiaomei. Carbon fixation ability of desertified grassland ecosystem in Zoige Plateau[J]. Journal of Natural Disasters, 2016, 25(6):42-50.(in Chinese)
[34] Sparling G, Ross D, Trustrum N, et al. Recovery of topsoil characteristics after landslip erosion in dry hill country of New Zealand, and a test of the space-for-time hypothesis[J]. Soil Biology & Biochemistry, 2003, 35(12):1575-1586.
[35] Cheng C H, Hsiao S C, Huang Y S, et al. Landslide-induced changes of soil physicochemical properties in Xitou, Central Taiwan[J]. Geoderma, 2016, 265:187-195.
[36] Blonska E, Lasota J, Zwydak M, et al. Restoration of forest soil and vegetation 15 years after landslides in a lower zone of mountains in temperate climates[J]. Ecological Engineering, 2016, 97:503-515.
[37] Den Eynde E V, Dondeyne S, Isabirye M, et al. Impact of landslides on soil characteristics:implications for estimating their age[J]. Catena, 2017, 157:173-179.
[38] Schomakers J, Jien S H, Lee T Y, et al. Soil and biomass carbon re-accumulation after landslide disturbances[J]. Geomorphology, 2017, 288:164-174.

备注/Memo

备注/Memo:
收稿日期:2019-06-28;改回日期:2019-08-07。
基金项目:国家自然科学基金项目(41771539);第二次青藏高原综合科学考察研究项目(2019QZKK0903);国家重点研发计划政府间国际创新合作专项(2018YFE0100100);中国科学院战略性先导科技专项(XDA20030301);中国博士后科学基金(2019M663792)
作者简介:张焱(1992-),女,硕士研究生,主要从事地质灾害实验研究.E-mail:13027731996@126.com
通讯作者:邱海军(1983-),男,教授,博士,博士生导师,主要从事山地灾害与自然地理教学与研究工作.E-mail:haijunqiu@nwu.edu.cn
更新日期/Last Update: 1900-01-01