[1]甘建军,罗昌泰.中低山冲沟型泥石流运动参数及过程模拟[J].自然灾害学报,2020,29(02):097-110.[doi:10.13577/j.jnd.2020.0210]
 GAN Jianjun,LUO Changtai.Runout and process simulation of gully debris flow in middle and low mountains[J].,2020,29(02):097-110.[doi:10.13577/j.jnd.2020.0210]
点击复制

中低山冲沟型泥石流运动参数及过程模拟
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年02期
页码:
097-110
栏目:
出版日期:
2020-04-28

文章信息/Info

Title:
Runout and process simulation of gully debris flow in middle and low mountains
作者:
甘建军 罗昌泰
江西省水工程安全与资源高效利用工程研究中心, 南昌工程学院, 江西 南昌 330099
Author(s):
GAN Jianjun LUO Changtai
Jiangxi Engineering Research Center of Water Engineering Safety and Resources Efficient Utilization, Nanchang Institute of Technology, Nanchang 330099, China
关键词:
冲沟型泥石流流槽试验运动参数物理模拟数值模拟
Keywords:
gully debris flowflow groove testrunout parametersphysical simulationnumerical simulation
分类号:
P642;X43
DOI:
10.13577/j.jnd.2020.0210
摘要:
降雨诱发中低山冲沟型泥石流的运动速度、堆积厚度是泥石流防治的重要参数,以江西省修水县平石寺泥石流为研究对象,采用现场调查、流槽试验、Voellmy碎屑流运动理论和快速物质运动仿真平台(RAMMS3D)等方法对泥石流演化过程模拟。结果表明,泥石流的最大的泥石流运动速度、堆积厚度分别是5.69m/s、12.63 m,各关键位置运动速度、堆积厚度与泥石流现场调查结果相近;现场调查和流槽试验为数值模拟提供地形地貌、干摩擦系数和黏滞系数等关键参数,RAMMS3D数值模拟能够准确地模拟泥石流的运动变形过程,确定泥石流的影响区域。
Abstract:
In order to study the movement speed and deposition thickness of the rain-induced debris flow in mid-low mountain, a new approach was proposed in this paper of the debris flow in Pingshi temple, Xiushui county, Jiangxi province. Field investigation and flume test were to be used to provide the debris flow runout parameter, then Voellmy theory and RAMMS3D were used to simulate the debris flow evolution process. The results show that the maximum velocity and the maximum sedimentary thickness of this debris flow were 5.69 m/s and 12.63 m respectively. The movement velocity and the sedimentary thickness at the key positions of the mudslides similarly to field investigation results. Field investigation and flume test could provide topography, dry friction coefficient and the viscous coefficient for numerical simulation. RAMMS3D numerical simulation can accurately simulate the movement and deformation process of debris flow and determine the affected area of debris flow.

参考文献/References:

[1] 甘建军, 袁良浍, 李明, 等. 鄱阳湖流域暴雨型泥石流形成机制与动力特征-以江西修水县卢庄沟泥石流为例[J].灾害学, 2017, 32(2):154-158. GAN Jianjun, YUAN Liangkuai, LI Ming, et al.Formation mechanism and dynamic characteristics of rainstorm-induced debris flow in Poyang Lake valley of Jiangxi province[J]. Journal of Catastrophology, 2017, 32(2):154-158. (in Chinese)
[2] Berger C, Christen M, Speerli J, et al. A comparison of physical and computer-based debris flow modelling of a deflection structure at Illgraben[C]//Switzerland, Interpraevent 2016, Conference Proceedings, 2016, 212-220.
[3] 王毅, 周勇, 余业. 毛家湾隧道口沟泥石流形成机制及发展趋势研究[J]. 自然灾害学报, 2017, 26(6):120-128. WANG Yi, ZHOU Yong, YU Ye. Study on formation mechanism and development trend of Maojiawan tunnel ditch debris flow[J]. Journal of Natural Disasters, 2017, 26(6):120-128. (in Chinese)
[4] 周健, 杜强, 李翠娜. 降雨强度对泥石流起动影响的模型试验研究[J]. 自然灾害学报, 2016, 25(3):104-113. ZHOU Jian, DU Qiang, LI Cuina. Model test of rainfall intensity influence on debris flow starting[J]. Journal of Natural Disasters, 2016, 25(3):104-113. (in Chinese)
[5] 陈亮, 宗士昌, 李祥龙, 等.基于Voellmy模型的哀牢山地区滑坡泥石流灾害运动过程数值模拟[J]. 南水北调与水利科技, 2017, 15(3):113-119. CHEN Liang, ZONG Shichang, LI Xianglong, et al. Simulation of landslide/debris flow runout process in Ailaoshan using Voellmy model[J]. South to North Water Transfers and Water Science & Technology, 2017,15(3):113-119. (in Chinese)
[6] 唐红梅, 陈洪凯. 冲淤变动型沟谷泥石流形成条件研究[J]. 重庆交通学院学报, 2004, 23(5):82-88. TANG Hongmei, CHEN Hongkai. Research on formation conditions of V-shaped debris flow with impact and deposit[J]. Journal of Chongqing Jiaotong University, 2004, 23(5):82-88. (in Chinese)
[7] 吴强, 徐林荣, 周凯, 等. 沟道起动类泥石流松散堆积物起动分析[J]. 自然灾害学报, 2015, 24(2):89-96. WU Qiang, XU Linrong, ZHOU Kai, et al. Starting analysis of loose accumulation of gully-startup debris flow[J]. Journal of Natural Disasters, 2015, 24(2):89-96. (in Chinese)
[8] Rickenmant D, Laigle D, McArdell B W, et al.Comparision of 2D debris-flow simulation models with field events[J]. Computational, 2006,12(2):241-264.
[9] Schraml K, Thomschitz B, McArdell, et al. Modeling debris-flow runout pattern on two alpine fans with different dynamic simulation[J]. Natural Hazards and Earth System Science, 2015, 15(1):1483-1492.
[10] 倪化勇. 人工降雨条件下冲沟型泥石流起动试验研究[J]. 工程地质学报, 2015, 23(1):111-118. NI Huayong. Field experiments for groove-type debris flow initiation with artificial rainfall[J]. Journal of Engineering Geology, 2015, 23(1):111-118. (in Chinese)
[11] 王秀丽, 韩飞. 泥石流作用下新型楔挡分流结构的流-固耦合动力分析[J]. 自然灾害学报, 2014, 23(2):61-66. WANG Xiuli, HAN Fei. Flow-soild coupling dynamic analysis of new-type wedge block shunt structure under effect of debris flow[J]. Journal of Natural Disasters, 2014, 23(2):61-66. (in Chinese)
[12] Kang, C., Chan, D. Numerical simulation of 2D granular flow entrainment using DEM[J]. Granular matter, 2018, 20:12-30.
[13] Van Westen,C., Van Asch, T., Soeters R. Landslide hazard and risk zonation-why is it still so difficult?[J]. Bull Eng Geol Environ, 2006, 65:167-184.
[14] Fan, L. F. Lehmann, P. McArdell P. Linking rainfall-induced landslides with debris flows runout patterns towards catchment scale hazard assessment[J]. Geomorphology, 2017, 280(1):1-15.
[15] 缪吉伦, 张文忠, 周家瑜. 基于SPH方法的黏性泥石流堆积形态数值模拟[J]. 自然灾害学报, 2013, 22(6):125-131. MIAO Jilun, ZHANG Wenzhong, ZHOU Jiayu. Numerical simulation ofthe accumulation state of viscous debris flow by smooth particle hydrodynamics method[J]. Journal of Natural Disasters, 2013, 22(6):125-131. (in Chinese)
[16] Frank, F., McArdell, B. W., Huggel, C, et al. The importance of entrainment and bulking on debris flow runout modeling:examples from the Swiss Alps[J]. Natural Hazards and Earth System Science, 2015,15:2569-2583.
[17] Christen M, Kowalski J, Bartelt P. RAMMS:Numerical simulation of dense snow avalanchesin three-dimensional terrain[J]. Cold Regions Science and Technology, 2010, 63(1-2):1-14.
[18] 方成杰, 钱德玲, 徐士彬, 等. 基于可拓学和熵权的中巴公路泥石流易发性评价[J]. 自然灾害学报, 2016, 25(6):18-26. FANG Chengjie, QIAN Deling, XU Shibin, et al. Debris flow susceptibility evaluation of Karakoram Highway based on extenics and entropy weight[J]. Journal of Natural Disasters, 2016, 25(6):18-26. (in Chinese)
[19] Dieter, R., Markus, Z. The 1987 debris flows in Switzerland:documentation and analysis[J]. Geomorphology, 1993, 8(2-3):175-189.
[20] Jakob, M., Hungr, O. Debris-flow Hazards and Related Phenomena[S]. Praxis Publishing, Chichester, UK. 2005.
[21] 聂银瓶, 李秀珍. 基于Flow-R模型的八一沟泥石流危险性评价[J]. 自然灾害学报, 2019, 28(1):156-165. NIE Yinping, LI Xiuzhen. Hazard assessment of Bayi gully debris flow based on Flow-R model[J]. Journal of Natural Disasters, 2019, 28(1):156-165. (in Chinese)
[22] 李斌, 赵阳, 龙建辉. 翼墙型拦挡坝在泥石流防治中的应用研究——以塘房沟泥石流治理为例[J]. 自然灾害学报, 2017, 26(6):129-135. LI Bin, ZHAO Yang, LONG Jianhui.Research on application of wing wall type dam in prevention of debris flow-A case study of Tangfanggou debris flow[J]. Journal of Natural Disasters, 2017, 26(6):129-135. (in Chinese)
[23] 余斌. 二维定常泥流的数值模拟[J]. 自然灾害学报, 1995, 4(4):96-99. YU Bin. Two dimensional numerical simulation of steady mud flow[J]. Journal of Natural Disasters, 1995, 4(4):96-99. (in Chinese)
[24] 甘建军, 李荐华. 鄱阳湖湖相深厚软土工程地质特性研究[J]. 南昌工程学院学报, 2018, 37(3):12-18. GAN Jianjun, LI Jianhua. Analysis on geological characteristics of deep soft soil engineering under poyang lake[J]. Journal of Nanchang Institute of Technology, 2018, 37(3):12-18. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-04-16;改回日期:2019-06-05。
基金项目:江西省水工程安全与资源高效利用工程研究中心开放基金项目(OF201603);国家自然科学基金项目(51869012,41641023);江西省重点研发计划(20161BBG70051,20171BBG70046);江西省教育厅科技项目(GJJ151124)
作者简介:甘建军(1975-),男,副教授,博士,主要从事自然灾害防治方面的科研与教学工作.E-mail:ganjianjun@nit.edu.cn
更新日期/Last Update: 1900-01-01