[1]张洪豪,徐略勤,张令,等.近场脉冲型地震作用下上承式拱桥损伤模式研究[J].自然灾害学报,2020,29(02):118-127.[doi:10.13577/j.jnd.2020.0212]
 ZHANG Honghao,XU Lueqin,ZHANG Ling,et al.Damage mode analysis of deck-type arch bridge subjected to near-fault pulse-type ground motions[J].,2020,29(02):118-127.[doi:10.13577/j.jnd.2020.0212]
点击复制

近场脉冲型地震作用下上承式拱桥损伤模式研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年02期
页码:
118-127
栏目:
出版日期:
2020-04-28

文章信息/Info

Title:
Damage mode analysis of deck-type arch bridge subjected to near-fault pulse-type ground motions
作者:
张洪豪1 徐略勤1 张令1 李修君12
1. 重庆交通大学 土木工程学院, 重庆 400074;
2. 重庆交大建设工程质量检测中心有限公司, 重庆 400074
Author(s):
ZHANG Honghao1 XU Lueqin1 ZHANG Ling1 LI Xiujun12
1. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2. Chongqing Jiaotong University Construction Quality Inspection Center Co., Ltd, Chongqing 400074, China
关键词:
上承式拱桥损伤模式近场脉冲型地震IDAN-M相关曲线
Keywords:
deck-type arch bridgedamage modenear-fault pulse-type ground motionsIDAN-M correlation curves
分类号:
TU375.1;X9
DOI:
10.13577/j.jnd.2020.0212
摘要:
为了研究近场脉冲型地震作用下上承式钢筋混凝土拱桥的损伤模式,采用OpenSEES建立了某实际上承式箱板拱桥的全桥模型,根据N-M相关曲线和能力需求比分别研究了主拱圈与拱上立柱的抗震性能,并基于动力增量分析(IDA)对桥梁的损伤模式进行探讨。研究表明:在纵、横向地震输入下,拱圈的最大弯矩响应均出现在拱脚;当地震沿纵向输入时,较矮拱上立柱的剪力响应较大,而当地震沿横向输入时,拱上立柱将产生双向剪力,且较高立柱的横向剪力大于纵向,较矮立柱的纵向剪力大于横向;主拱圈的潜在抗震薄弱环节是拱脚,且其纵向抗震性能弱于横向;拱上立柱纵向抗震性能优于横向,靠近拱顶的立柱最先发生破坏,且以剪切破坏为主;较高的拱上立柱易发生横向剪切破坏,而较矮的拱上立柱易发生纵向剪切破坏。损伤分析表明,钢筋混凝土上承式拱桥在近场脉冲型地震作用下拱上建筑会先于主拱圈发生损伤。
Abstract:
In order to investigate the damage mode of deck-type reinforced concrete arch bridge subjected to near-fault pulse-type ground motions, the OpenSEES was used to establish the analytical model of an actual deck-type arch bridge with box section. The seismic performance of the arch ring and spandrel columns was examined according to the N-M correlation curves and capacity demand ratios. The damage mode of the bridge was discussed based on the incremental dynamic analysis (IDA). The results show that the maximum bending moment response of the arch ring is found in the springing sections under the excitations of both longitudinal and transverse directions. When the bridge is excited longitudinally, larger shear force responses are found in shorter spandrel columns. When the bridge is excited transversely, bidirectional shear force responses are found in the spandrel columns, and the transverse shear force responses are greater than the longitudinal ones for the higher columns and the opposite trend is also true for the shorter columns. The springing sections are the most vulnerable components of the arch ring, and their longitudinal seismic performance is weaker than their transverse one. The longitudinal seismic performance of the spandrel columns is better than their transverse one. The first damage occurs to the spandrel columns near the arch crown and is subjected to shear failure. The taller spandrel columns are prone to transverse shear failure, while the shorter ones are prone to longitudinal shear failure. The damage analysis shows that the spandrel structure of deck-type reinforced concrete arch bridge will be damaged prior to the main arch under the near-fault pulse-type ground motions.

参考文献/References:

[1] 庄卫林,陈乐生. 汶川地震公路震害调查分析:桥梁与隧道[M]. 北京:人民交通出版社,2013. ZHUANG Weilin,CHEN Lesheng. Analysis of Highways’ Damage in the Wenchuan Earthquake:Bridge and Tunnel[M]. Beijing:China Communications Press, 2013. (in Chinese)
[2] 孙路,林均岐,刘金龙. 基于桥梁震害评定地震烈度的研究[J]. 自然灾害学报,2016,25(4):77-85. SUN Lu, LIN Junqi, LIU Jinlong. Earthquake intensity evaluation based on seismic damage to bridges[J]. Journal of Natural Disasters, 2016, 25(4):77-85. (in Chinese)
[3] Hayden CP, Bray JD, Abrahamson NA. Selection of near-fault pulse motions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(7):1-14.
[4] 杜骞,夏修身,孙学先. 大跨度钢管混凝土拱桥非线性抗震性能研究[J]. 地震工程学报,2018,40(2):19-25. DU Qian, XIA Xiushen, SUN Xuexian. Nonlinear seismic behavior of long-span concrete-filled steel tubular arch bridges[J]. China Earthquake Engineering Journal, 2018, 40(2):19-25. (in Chinese)
[5] Wu Q, Yoshimura M, Takahashi K, et al. Nonlinear seismic properties of the Second Saikai Bridge:A concrete filled tubular (CFT) arch bridge[J]. Engineering Structures, 2006, 28(2):163-182.
[6] 黄福云,李建中,陈宝春,等. 钢管混凝土单圆管拱结构振动台阵试验研究[J]. 工程力学,2014,31(4):82-92. HUANG Fuyun, LI Jianzhong, CHEN Baochun, et al. Shaking tables testing of concrete filled steel tubular arc rib model[J]. Engineering Mechanics, 2014, 31(4):82-92. (in Chinese)
[7] 谢开仲,吕文高,覃乐勤,等. 钢管混凝土拱桥地震破坏评估研究[J]. 中国公路学报,2012,25(2):53-59. XIE Kaizhong, LU Wengao, QIN Leqin. Research on seismic damage evaluation of CFST arch bridges[J]. China Journal of Highway and Transport, 2012, 25(2):53-59. (in Chinese)
[8] 申现龙,陈永祁,刘荷,等. Pushover方法在钢管混凝土拱桥抗震分析中应用[J]. 振动与冲击,2018,37(6):182-194. SHEN Xianlong, CHEN Yongqi, LIU He, et al. Application of the pushover method in the seismic analysis of CFST arch bridge[J]. Journal of Vibration and Shock, 2018, 37(6):182-194. (in Chinese)
[9] 梁冠亭,刘敏,李明豪. 大跨度拱桥抗震性能分析与减震控制研究[J]. 自然灾害学报,2019,28(3):79-86. LIANG Guanting, LIU Min, LI Minghao. Seismic performance analysis and vibration control of arch bridge with long-span[J]. Journal of Natural Disasters, 2019, 28(3):79-86. (in Chinese)
[10] 唐堂,钱永久. 既有大跨度混凝土拱桥震害机理分析[J]. 地震工程学报,2016,38(5):701-706. TANG Tang, QIAN Yongjiu. Mechanism of seismic damage of a large-span concrete arch bridge[J]. China Earthquake Engineering Journal, 2016, 38(5):701-706.
[11] Alvarez JJ, Aparicio AC, Jara JM, et al. Seismic assessment of a long-span arch bridge considering the variation in axial forces induced by earthquakes[J]. Engineering Structures, 2012, 34:69-80.
[12] Farahani EM, Maalek S. An investigation of the seismic behavior of a deck-type reinforced concrete arch bridge[J]. Earthquake Engineering and Engineering Vibration, 2017, 16(3):609-625.
[13] Deng K, Yan G, Yang H, et al. RC arch bridge seismic performance evaluation by sectional N-M interaction and coupling effect of brace beams[J]. Engineering Structures, 2019, 183:18-29.
[14] Mazzoni S, McKenna F, Scott MH, et al. Open System for Earthquake Engineering Simulation:OpenSEES Command Language Manual[M]. California:University of California, Berkeley, 2007.
[15] JTG/TB02-01-2008公路桥梁抗震设计细则[S]. 北京:人民交通出版社,2008. JTG/TB02-01-2008 Guidelines for Seismic Design of Highway Bridges[S]. Beijing:China Communication Press, 2008. (in Chinese)
[16] 徐略勤,乔万芝,何路平,等. 地震下高墩刚构桥桥台-背土相互作用分析方法对比[J]. 土木建筑与环境工程,2016,38(6):105-112. XU Lueqin, QIAO Wanzhi, HE Luping, et al. Comparison of analytical methods for the abutment-backfill interaction of a rigid frame bridge with high piers under seismic loading[J]. Journal of Civil, Architectural & Environmental Engineering, 2016, 38(6):105-112. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-08-12;改回日期:2019-11-12。
基金项目:重庆市教委科学技术研究项目(KJQN201900737);国家重点研发计划资助(2018YFB1600300,2018YFB1600301)
作者简介:张洪豪(1995-),男,硕士研究生,主要从事桥梁抗震研究.E-mail:zhanghonghao95@qq.com
通讯作者:徐略勤(1983-),男,教授,博士,博士生导师,主要从事桥梁抗震研究.E-mail:xulueqin@163.com
更新日期/Last Update: 1900-01-01