[1]孙钰苗,王源,布占宇,等.外置耗能壳板的钢框架桥墩抗震性能数值研究[J].自然灾害学报,2020,29(02):128-137.[doi:10.13577/j.jnd.2020.0213]
 SUN Yumiao,WANG Yuan,BU Zhanyu,et al.Numerical studies on seismic performance of steel frame pier with external energy dissipation shell plates[J].,2020,29(02):128-137.[doi:10.13577/j.jnd.2020.0213]
点击复制

外置耗能壳板的钢框架桥墩抗震性能数值研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年02期
页码:
128-137
栏目:
出版日期:
2020-04-28

文章信息/Info

Title:
Numerical studies on seismic performance of steel frame pier with external energy dissipation shell plates
作者:
孙钰苗1 王源1 布占宇1 孙利民2 谢文1
1. 宁波大学 土木与环境工程学院, 浙江 宁波 315211;
2. 同济大学 土木工程防灾国家重点实验室, 上海 200092
Author(s):
SUN Yumiao1 WANG Yuan1 BU Zhanyu1 SUN Limin2 XIE Wen1
1. School of Civil and Environmental Engineering, Ningbo University, Ningbo 315211, China;
2. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
震后功能可恢复钢框架桥墩低屈服耗能壳板累积滞回耗能等效黏滞阻尼比
Keywords:
earthquake resiliencesteel frame pierslow yield energy dissipation shell platescumulative hysteresis energyequivalent viscous damping ratio
分类号:
U442.5+5;TU37;X9
DOI:
10.13577/j.jnd.2020.0213
摘要:
将结构震后功能可恢复和耗能构件可更换引入钢框架桥墩:在墩柱塑性铰区外置低屈服耗能壳板来保护墩柱主体结构,且外置耗能壳板易于震后修复或更换。采用数值模拟方法比较研究了钢框架桥墩与外置耗能壳板的钢框架桥墩的滞回曲线、耗能能力、等效黏滞阻尼比、刚度和强度等抗震性能,探讨了外置耗能壳板参数(如材料屈服应力、安装高度和厚度等)对钢框架桥墩抗震性能的影响及其规律。结果表明:外置耗能壳板的钢框架桥墩抗震性能优于钢框架桥墩,且外置耗能壳板先于墩柱屈服,可有效保护墩柱主体免遭地震损伤;外置耗能壳板安装高度和厚度明显影响钢框架桥墩的抗震性能,而外置耗能壳板屈服应力对钢框架桥墩抗震性能的影响可忽略。
Abstract:
In this paper, the seismic design concept on the structural earthquake resilience and replaceable energy dissipation component is introduced to the steel frame pier. Namely, the easily repairable or replaceable energy dissipation shell plates are installed at the plastic hinge regions of the columns to enable the steel frame pier to remain elastic. The numerical simulations were conducted to investigate the seismic performance of the steel frame pier with/without the external energy dissipation shell plates, such as hysteretic curve, energy dissipation capacity, equivalent viscous damping ratio, stiffness and strength. Then the influences of the various parameters of the external energy dissipation shell plates, such as the yield stress, installed height and thickness, on the seismic performance of the steel frame pier were studied. The simulation results show that the seismic performance of the proposed steel frame pier with external energy dissipation shell plates is superior to that of the steel frame pier without the external energy dissipation shell plates. The yield displacement of the external energy dissipation shell plates is significantly less than that of the columns. Therefore, the external energy dissipation shell plates could effectively protect the column from the seismic damage. Moreover, the installed height and thickness of the external energy dissipation shell plates has an obvious influence on the seismic performance of the steel frame pier, while the yield stress of the external energy dissipation shell plates has no significant impact on the seismic performance of the steel frame pier.

参考文献/References:

[1] 李建中, 管仲国. 桥梁抗震设计理论发展:从结构抗震减震到震后可恢复设计[J]. 中国公路学报, 2017, 30(12):1-9,59. LI Jianzhong, GUAN Zhongguo. Research progress on bridge seismic design:target from seismic alleviation to post-earthquake structural resilience[J]. China Journal of Highway and Transport, 2017, 30(12):1-9,59. (in Chinese)
[2] Echevarria A, Zaghi A, Christenson R, et al. CFFT bridge columns for multihazard resilience[J]. Journal of Structural Engineering, 2015:C4015002.
[3] Kawashima K, Macrae G A, Hoshikuma J-I, et al. Residual displacement response spectrum[J]. Journal of Structural Engineering, 1998, 124(5):523-530.
[4] 孙治国, 王东升, 李宏男, 等. 汶川地震钢筋混凝土框架震害及震后修复建议[J]. 自然灾害学报, 2010, 19(4):114-123. SUN Zhiguo, WANG Dongsheng, LI Hongnan, et al. Damage investigation of RC frames in Wenchuan earthquake and suggestions for post-earthquake rehabilitation[J]. Journal of Natural Disasters, 2010, 19(4):114-123. (in Chinese)
[5] Bruneau M. Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake-a North American perspective[J]. Engineering Structures, 1998, 20(12):1063-1078.
[6] Yamao T, Iwatsubo K, Yamamuro T, et al. Steel bridge piers with inner cruciform plates under cyclic loading[J]. Thin-Walled Structures, 2002, 40(2):183-197.
[7] Aoki T, Takaku T, Fukumoto Y, et al. Experimental investigation for seismic performance of framed structures having longitudinally profiled plates[J]. Journal of Constructional Steel Research, 2008, 64(7-8):875-881.
[8] Ge H, Kang L.Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading[J]. Engineering Structures, 2014, 59:809-820.
[9] Ge H, Susantha K, Satake Y, et al. Seismic demand predictions of concrete-filled steel box columns[J]. Engineering Structures, 2003, 25(3):337-345.
[10] Shimizu S, Watanabe T. Behaviour of concrete-filled steel columns under the seismic loading[J]. Thin-Walled Structures, 2007, 45(10-11):921-926.
[11] 王占飞, 隋伟宁, 李帼昌, 等. 水平往复荷载作用下部分填充混凝土圆形钢桥墩柱的力学性能[J]. 中国公路学报, 2015, 28(1):62-70. WANG Zhanfei, SUI Weining, LI Guochang, et al. Mechanical behavior of partially concrete-filled steel circular bridge piers under cyclic lateral load[J]. China Journal of Highway and Transport, 2015, 28(1):62-70. (in Chinese)
[12] Kitada T, Matsumura M, Otoguro Y. Seismic retrofitting techniques using an energy absorption segment for steel bridge piers[J]. Engineering structures, 2003, 25(5):621-635.
[13] Chen S J, Chen J. Steel bridge columns with pre-selected plastic zone for seismic resistance[J]. Thin-Walled Structures, 2009, 47(1):31-38.
[14] Li H, Gao X, Liu Y, et al. Seismic performance of new-type box steel bridge piers with embedded energy-dissipating shell plates under tri-directional seismic coupling action[J]. International Journal of Steel Structures, 2017, 17(1):105-125.
[15] 吕西林, 周颖, 陈聪. 可恢复功能抗震结构新体系研究进展[J]. 地震工程与工程振动, 2014, 34(4):130-139. LV Xilin, ZHOU Ying, CHEN Cong. Research progress on innovative earthquake-resilient structural systems[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4):130-139. (in Chinese)
[16] 黄勇, 张良, 乐威杰, 等. 桥梁抗震研究的近期进展[J]. 地震工程与工程振动, 2017, 37(3):166-174. HUANG Yong, ZHANG Liang, LE Weijie, et al.Recent development of seismic research on bridge[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(3):166-174. (in Chinese)
[17] Priestley M N, Seible F, Calvi G M, et al. Seismic Design and Retrofit of Bridges[M]. John Wiley & Sons, 1996.
[18] 姜锐, 苏小卒. 塑性铰长度经验公式的比较研究[J]. 工业建筑, 2008(z1):425-430. JIANG Rui, SU Xiaozu. Comparative study on emprical plastic hinge length formulas[J]. Industrial Construction, 2008(z1):425-430. (in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-06-28;改回日期:2019-09-10。
基金项目:国家自然科学基金项目(51608282,91515101-5)
作者简介:孙钰苗(1994-)女,硕士研究生,主要从事可恢复功能结构体系研究.E-mail:sunyumiaonbu@163.com
通讯作者:谢文(1981-)男,副教授,硕士生导师,主要从事桥梁抗震与损伤控制、可恢复功能结构体系研究.E-mail:xiewen@nbu.edu.cn
更新日期/Last Update: 1900-01-01