[1]李渝平,农孟松,梁维亮,等.基于RKW理论的广西一次飑线过程演变特征分析[J].自然灾害学报,2020,29(02):161-172.[doi:10.13577/j.jnd.2020.0216]
 LI Yuping,NONG Mengsong,LIANG Weiliang,et al.Analysis on evolutionary characteristics of a squall line in Guangxi Province based on RKW theory[J].,2020,29(02):161-172.[doi:10.13577/j.jnd.2020.0216]
点击复制

基于RKW理论的广西一次飑线过程演变特征分析
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年02期
页码:
161-172
栏目:
出版日期:
2020-04-28

文章信息/Info

Title:
Analysis on evolutionary characteristics of a squall line in Guangxi Province based on RKW theory
作者:
李渝平1 农孟松2 梁维亮2 黄丹萍1 苏小玲3 王娟4
1. 南宁市气象局, 广西 南宁 530022;
2. 广西区气象台, 广西 南宁 530022;
3. 柳州市气象局, 广西 柳州 545001;
4. 桂林市气象局, 广西 桂林 541001
Author(s):
LI Yuping1 NONG Mengsong2 LIANG Weiliang2 HUANG Danping1 SU Xiaoling3 WANG Juan4
1. Nanning Meteorological Bureau, Nanning 530022, China;
2. Guangxi Meteorological Observatory, Nanning 530022, China;
3. Liuzhou Meteorological Bureau, Liuzhou 545001, China;
4. Guilin Meteorological Bureau, Guilin 541001, China
关键词:
RKW理论飑线冷池风切变演变特征
Keywords:
RKW theorysquall linecold poolwind shearevolutionary characteristics
分类号:
P458;X43
DOI:
10.13577/j.jnd.2020.0216
摘要:
利用NCEP-FNL资料、多普勒雷达资料、风廓线雷达资料、加密自动站资料,对2018年3月4日广西一次飑线过程的演变特征进行分析。结果表明:本次飑线过程是由外来雷暴单体移入广西,在有利的环境条件下组织成线状对流而形成;对流层中低层强的西南气流使雷暴单体移动过程中合并、组织以及雷暴冷池出流边界的强迫抬升作用是飑线形成的直接原因;飑线发生前及影响时段广西具备强低空垂直风切变环境,在广西北部自西向东呈现相对的高-低-高的分布特征,风切变矢量与飑线回波近乎垂直;飑线冷池传播速度及环境低空风垂直切变的变化造成的二者比值(冷切比)的变化能很好地对应飑线演变特征;将飑线后部急流引发的风切变包括到低空风切变之内,对冷切比进行修正,能够更好地解释飑线的消亡。
Abstract:
Evolution characteristics of a squall line process occurred in Guangxi Province on 4 March 2018 were analyzed with NCEP-FNL data, Doppler radar data, wind profiler data and the intensive surface AWS data. The results showed that the squall line occurred when the thunderstorm cells entered Guangxi Province and organized into a linear convection in appropriate environmental condition. Consolidation of thunderstorm cells caused by strong southwest air current in the middle and lower troposphere, and forced lift of thunderstorm outflow boundary, were the direct causes of the squall line. Guangxi Province was in a strong low-altitude vertical wind shear environment before and during the occurrence of the squall line, there was a relatively high-low-high distribution in northern Guangxi from west to east, and wind shear vector was nearly perpendicular to the squall line. Variation of the ratio of propagation velocity of cold pool to vertical wind shear could well correspond to the evolution characteristics of squall line. The dissipation of the squall line could be better explained if we correct the ratio by incorporating the wind shear caused by the jet at rear of the squall line into the low-level wind shear.

参考文献/References:

[1] Rotunno R, Klemp J B, Weisman M L. A theory for strong, long-lived squall lines[J]. Journal of the Atmospheric Sciences, 1988, 45(3):463-485.
[2] Lafore J P, Moncrieff M W. A numerical investigation of the organization and interaction of the convective and stratiform regions of tropical squall lines[J]. Journal of the Atmospheric Sciences, 1989, 46(4):521-544.
[3] Garner S T, Thorpe A J. The development of organized convection in a simplified squall-line model[J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(503):101-124.
[4] Coniglio M C, Stensrud D J. Simulation of a progressive derecho using composite initial conditions[J]. Monthly Weather Review, 2001, 129(7):1593-1616.
[5] Evans J S, Doswell C A. Examination of derecho environments using proximity soundings[J]. Weather & Forecasting, 2001, 16(3):329-342.
[6] Weisman M L, Rotunno R. "A theory for strong long-lived squall lines" revisited[J]. Journal of the Atmospheric Sciences, 2004, 61(4):361-382.
[7] 张建军, 王咏青, 钟玮. 飑线组织化过程对环境垂直风切变和水汽的响应[J]. 大气科学, 2016, 40(4):689-702. ZHANG Jianjun, WANG Yongqing, ZHONG Wei. Impact of vertical wind shear and moisture on the organization of squall lines[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(4):689-702. (in Chinese)
[8] 韩颂雨,魏鸣,张蕾.飑线回波结构与环境风垂直切变的关系[J].科学技术与工程,2016,16(8):18-26. HAN Songyu, WEI Ming, ZHANG Lei. Relationship between the structure of squall line and environment wind vertical shear[J]. Science Technology and Engineering, 2016, 16(8):18-26. (in Chinese)
[9] 陈明轩, 王迎春. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟[J].气象学报, 2012, 70(3):371-386. CHEN Mingxuan, WANG Yingchun. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in north China[J]. Acta Meteorological Sinica, 2012, 70(3):371-386. (in Chinese)
[10] 郑淋淋, 孙建华. 风切变对中尺度对流系统强度和组织结构影响的数值试验[J]. 大气科学, 2016, 40(2):324-340. ZHENG Linlin, SUN Jianhua. The impact of vertical wind shear on the intensity and organizational mode of mesoscale convective systems using numerical experiments[J]. Chinese Journal of Atmospheric Sciences, 2016, 40(2):324-340. (in Chinese)
[11] 李娜, 冉令坤, 高守亭. 华东地区一次飑线过程的数值模拟与诊断分析[J]. 大气科学, 2013, 37(3):595-608. LI Na, RAN Lingkun, GAO Shouting. Numerical simulation and diagnosis study of a squall line in eastern China[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(3):595-608. (in Chinese)
[12] 王俊, 朱君鉴, 任钟冬. 利用双多普勒雷达研究强飑线过程的三维风场结构[J]. 气象学报, 2007, 65(2):241-251. WANG Jun, ZHU Junjian, REN Zhongdong. A study of 3-d wind structure of a strong squall line using dual-doppler weather radar data[J]. Acta Meteorological Sinica, 2007, 65(2):241-251. (in Chinese)
[13] 潘玉洁, 赵坤, 潘益农, 等. 用双多普勒雷达分析华南一次飑线系统的中尺度结构特征[J]. 气象学报, 2012, 70(4):736-751. PAN Yujie, ZHAO Kun, PAN Yinong, et al. Dual-doppler analysis of a squall line in southern China[J]. Acta Meteorological Sinica, 2012, 70(4):736-751. (in Chinese)
[14] 姚叶青, 俞小鼎, 张义军, 等. 一次典型飑线过程多普勒天气雷达资料分析[J]. 高原气象, 2008, 27(2):373-381. YAO Yeqing,YU Xiaoding,ZHANG Yijun,et al. Analysis on a typical squall line case with doppler weather radar data[J].Plateau Meteorology,2008,27(2):373-381. (in Chinese)
[15] 李淑玲, 刁秀广, 朱敏, 等. 一次飑线过程多普勒雷达资料分析[J]. 气象, 2009, 35(3):60-65. LI Shuling, DIAO Xiuguang, ZHU Min, et al. Analysis on the feature of doppler radar data about a squall line process[J]. Meteorological Monthly, 2009, 35(3):60-65. (in Chinese)
[16] 杨淑华, 王丽丽, 梁进秋, 等. 山西北部一次飑线大风的多普勒雷达特征[J]. 自然灾害学报, 2011, 20(3):113-119. YANG Shuhua, WANG Lili, LIANG Jinqiu, el at. Feature of Doppler radar data about a squall line strong wind in north of Shanxi Province[J]. Journal of Natural Disasters, 2011, 20(3):113-119. (in Chinese)
[17] 邵美荣, 林谦, 吴迎旭. 黑龙江省西部地区一次大范围强飑线过程分析[J]. 自然灾害学报, 2009, 18(1):158-163. SHAO Meirong, LIN Qian, WU Yingxu. Analysis of a widespread squall line process in western region of Heilongjiang Province on June 11, 2007[J]. Journal of Natural Disasters, 2009, 18(1):158-163. (in Chinese)
[18] 王国荣, 卞素芬, 王令, 等. 用地面加密自动观测资料对北京地区一次飑线过程的分析[J]. 气象, 2010, 36(6):59-65. WANG Guorong, BIAN Sufen, WANG Ling, et al. Analysis on a typical squall line case with surface automatic weather observations[J]. Meteorological Monthly, 2010, 36(6):59-65. (in Chinese)
[19] 曹艳华, 马中元, 叶小峰, 等. 江西外来飑线的常见卫星云图特征[J]. 自然灾害学报, 2010, 19(4):54-59. CAO Yanhua, MA Zhongyuan, YE Xiaofeng, et al. Satellite cloud chart features of outside squall line influencing on Jiangxi[J]. Journal of Natural Disasters, 2010, 19(4):54-59. (in Chinese)
[20] 岳平, 李栋梁, 刘洪兰. 陇东地区一次强冰雹过程的稳定度分析[J]. 自然灾害学报, 2008, 17(3):158-162. YUE Ping, LI Dongliang, LIU Honglan. Stability analysis of a heavy hail process in East Gansu Region[J]. Journal of Natural Disasters, 2008, 17(3):158-162. (in Chinese)
[21] 郁珍艳, 张依慈, 何立富, 等. 一次中尺度对流系统的发生发展特征分析[J]. 自然灾害学报, 2012, 21(4):91-98. YU Zhenyan, ZHANG Yici, HE Lifu, et al. Characteristic analysis of formation and development of a mesoscale convective system[J]. Journal of Natural Disasters, 2012, 21(4):91-98. (in Chinese)
[22] 董昊, 徐海明, 罗亚丽. 云凝结核浓度对WRF模式模拟飑线降水的影响:不同云微物理参数化方案的对比研究[J]. 大气科学, 2012, 36(1):145-169. DONG Hao, XU Haiming, LUO Yali. Effects of cloud condensation nuclei concentration on precipitation in convection permitting simulations of a squall line using WRF model:Sensitivity to cloud microphysical schemes[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(1):145-169. (in Chinese)
[23] 张哲, 周玉淑, 高守亭. 一次辽东湾飑线过程的观测与数值模拟分析[J]. 大气科学, 2018, 42(5):1157-1174. ZHANG Zhe, ZHOU Yushu, GAO Shouting. Observational and numerical analyses of a squall line occurring over Liaodong Gulf of China[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(5):1157-1174. (in Chinese)
[24] 许广, 费建芳, 黄小刚, 等. 一次飑线过程的云微物理参数化方案数值实验及其成因分析[J]. 气象科学, 2017, 37(3):283-292. XU Guang, FEI Jianfang, HUANG Xiaogang, et al. Simulation experiments of cloud microphysical parameterization schemes on a squall line and its genesis analysis[J].Journal of the Meteorological Sciences,2017, 37(3):283-292. (in Chinese)
[25] 黄丹莲, 高士博, 闵锦忠. 不同云微物理方案对一次飑线模拟的影响[J]. 气象科学, 2017, 37(2):173-183. HUANG Danlian, GAO Shibo, MIN Jinzhong. Impact of different cloud microphysical schemes on a squall line simulation[J]. Journal of the Meteorological Sciences, 2017, 37(2):173-183. (in Chinese)
[26] 康勇, 李鹏涛. 风速计量中空气密度测量方法研究[J]. 仪器仪表标准化与计量, 2013(6):38-40. KANG Yong, LI Pengtao. Experimental investigation to measurements of air density in the air velocity measuring[J]. Instrument Standardization & Metrology, 2013(6):38-40. (in Chinese)
[27] 刘攀峰. 青海湖地区空气密度年变化分析[J]. 青海大学学报(自然科学版), 2010, 28(2):14-15. LIU Panfeng. Analysis of annual air density variation in Qinghai lake region[J]. Journal of Qinghai University (Natural Science Edition), 2010, 28(2):14-15. (in Chinese)
[28] 周西华, 王继仁, 洪林. 湿空气密度的快速准确测算方法[J]. 矿业安全与环保, 2005, 32(4):49-50. ZHOU Xihua, WEN Jiren, HONG Lin. Rapid and accurate calculation method of wet air density[J]. Mining Safety & Environmental Protection, 2005, 32(4):49-50. (in Chinese)
[29] 吴海英, 裴海瑛, 沈树勤, 等. 飑线传播与发展及其引发地面强风过程个例分析[J]. 气象科技, 2007, 35(5):676-680+764. WU Haiying, PEI Haiying, SHEN Shuqin, el at. Propagation and development of a squall line and its induced server wind[J]. Meteorological Science and Technology, 2007, 35(5):676-680+764. (in Chinese)
[30] 刘香娥, 郭学良. 灾害性大风发生机理与飑线结构特征的个例分析模拟研究[J]. 大气科学, 2012, 36(6):1150-1164. LIU Xiange, GUO Xueliang. Analysis and numerical simulation research on severe surface wind formation mechanism and structural characteristics of a squall line case[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(6):1150-1164. (in Chinese)
[31] 农孟松, 翟丽萍, 屈梅芳, 等. 广西一次飑线大风天气的成因和预警分析[J]. 气象, 2014, 40(12):1491-1499. NONG Mengsong, ZHAI Liping, QU Meifen, et al. Study on initialization mechanism and alert of gale in squall line storm event[J]. Meteorological Monthly, 2014, 40(12):1491-1499. (in Chinese)
[32] 刘莲, 王迎春, 陈明轩. 京津冀一次飑线过程的精细时空演变特征分析[J]. 气象, 2015, 41(12):1433-1446. LIU Lian, WANG Yingchun, CHEN Mingxuan. Spatio-temporal evolution characteristics of a squall line in Beijing-Tianjin-Hebei region[J]. Meteorological Monthly, 2015, 41(12):1433-1446. (in Chinese)
[33] 郭弘,林永辉,周淼,等.华南暖区暴雨中一次飑线的中尺度分析[J].暴雨灾害,2014,33(2):171-180. GUO Hong, LIN Yonghui, ZHOU Miao, et al. Mesoscale analysis on a squall line in the warm-sector heavy rainfall over southern China[J]. Torrential Rain Disasters, 2014, 33(2):171-180. (in Chinese)
[34] 梁俊平, 张一平. 2013年8月河南三次西南气流型强对流天气分析[J]. 气象, 2015, 41(11):1328-1340. LIANG Junping, ZHANG Yiping. Analysis on three severe convective weather events of southwest flow type in Henan August 2013[J]. Meteorological Monthly, 2015,41(11):1328-1340. (in Chinese)

相似文献/References:

[1]杨淑华,王丽丽,梁进秋.山西北部一次飑线大风的多普勒雷达特征[J].自然灾害学报,2011,20(03):113.
 YANG Shu-hua,WANG Li-li,LIANG Jin-qiu.Feature of Doppler radar data about a squall line strong wind in north of Shanxi Province[J].,2011,20(02):113.
[2]邵美荣,林谦,吴迎旭.黑龙江省西部地区一次大范围强飑线过程分析[J].自然灾害学报,2009,18(01):158.
 SHAO Mei-rong,LIN Qian,WU Ying-xu.Analysis of a widespread squall line process in western region of Heilongjiang Province on June 11, 2007[J].,2009,18(02):158.

备注/Memo

备注/Memo:
收稿日期:2019-06-26;改回日期:2019-08-30。
基金项目:广西科技重点研发计划项目(GK-AB17195037)
作者简介:李渝平(1990-),男,工程师,主要从事短期、短临天气预报和研究.E-mail:liyupingwork@foxmail.com
通讯作者:农孟松(1965-),女,正研级高工,主要从事灾害性天气预报和研究.E-mail:nmsong1997@163.com
更新日期/Last Update: 1900-01-01