[1]杨爱武,杨少坤,梁超,等.吹填泥浆固化土蠕变及长期强度特性研究[J].自然灾害学报,2020,29(03):028-35.[doi:10.13577/j.jnd.2020.0304]
 YANG Aiwu,YANG Shaokun,LIANG Chao,et al.Research on creep and long-term strength characteristics of solidified dredger mud[J].,2020,29(03):028-35.[doi:10.13577/j.jnd.2020.0304]
点击复制

吹填泥浆固化土蠕变及长期强度特性研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年03期
页码:
028-35
栏目:
出版日期:
2020-06-28

文章信息/Info

Title:
Research on creep and long-term strength characteristics of solidified dredger mud
作者:
杨爱武1 杨少坤2 梁超3 封安坤4
1. 东华大学 环境科学与工程学院, 上海 201620;
2. 天津城建大学 天津市软土特性与工程环境重点实验室, 天津 300384;
3. 天津大学 建筑工程学院, 天津 300350;
4. 西安市建筑设计研究院有限公司, 陕西 西安 710054
Author(s):
YANG Aiwu1 YANG Shaokun2 LIANG Chao3 FENG Ankun4
1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
2. Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment, Tianjin Chengjian University, Tianjin 300384, China;
3. School of Civil Engineering, Tianjin University, Tianjin 300350, China;
4. Xi’an Architectural Design and Research Institute Co. Ltd, Xi’an 710054, China
关键词:
吹填泥浆固化土蠕变历时曲线等时曲线长期强度
Keywords:
dredger mudsolidified soilcreep deformationduration curveisochronous curvelong-term strength
分类号:
TU411X9
DOI:
10.13577/j.jnd.2020.0304
摘要:
利用GU型号粉末固化剂对天津临港工业区的吹填泥浆进行固化,对固化后的吹填泥浆固化土进行不同围压下的蠕变试验。结果表明,泥浆固化土蠕变历时曲线整体态势与一般结构性软土相似,但又有明显特征,其瞬时变形较大,衰减过程很短;蠕变等时曲线均存在明显拐点,拐点前后曲线刚度发生变化,表明固化土具有较强结构性且此点对应的应力为结构屈服应力。此外,t=0h的等时曲线离散性较强,其他时间点曲线具有明显一致性,表现出固化土结构性材料的特点。基于蠕变等时曲线,结合应力-应变的双曲线关系,引入时间参量t,建立了能够反映泥浆固化土蠕变特征的预测公式。同时,利用蠕变等时曲线,构建了泥浆固化土长期强度预测关系式,并求得固化土长期抗剪强度指标值。
Abstract:
GU powder curing agent is used to solidify the dredger mud taken from the Lingang industrial zone in Tianjin, and then the creep deformation experiments of the solidified soil are carried out under different confining pressures. The results showed that the overall situation of the isochronous curves of mud solidified soil are similar to the classic soft soil, but also has its obvious characteristics of large instantaneous deformation and short attenuation process. The isochronous curve of creep has obvious inflection point and its stiffness changes obviously after the point, which indicates that the solidified soil has strong structure and the stress corresponding to this point is structural yield stress. In addition, the isochronous curve of t=0h is more discrete, which the curves of other time points are obviously consistent, showing the characteristics of solidified soil structural materials. Based on the isochronous curve of creep, a prediction formula which can reflect the creep characteristics of mud solidified soil is established by taking the parameter t of time into the hyperbolic relationship between stress and strain. Meanwhile, by using the isochronous curve of creep, the prediction formula of long-term strength of mud solidified soil is constructed, and the index value of long-term shear strength of solidified soil is obtained.

参考文献/References:

[1] 曹玉鹏, 卞夏, 邓永锋. 高含水率疏浚淤泥新型复合固化材料试验研究[J]. 岩土力学, 2011, 32(增1):321-326. CAO Yupeng, BIAN Xia, DENG Yongfeng. Solidification of dredged sludge with high water content by new composite additive[J]. Rock and Soil Mechanics, 2011,32(S1):321-326.(in Chinese)
[2] 傅志斌, 张丽红, 张继星, 等. 深圳滨海相吹填土固化的试验研究[J]. 工程勘察, 2012, 40(3):7-11. FU Zhibin, ZHANG Lihong, ZHANG Jixing, et al. Research on soildfying dredger fill of littoral facies with experiment[J]. Geotechnical Investigation and Surveying, 2012, 40(3):7-11.(in Chinese)
[3] 杨爱武, 周金, 孔令伟. 天津滨海新区吹填软土固化试验研究[J]. 岩土力学, 2013, 34(9):2442-2448. YANG Aiwu, ZHOU Jin, KONG Lingwei. Experimental study of solidification of soft dredger fill in Tianjin Binhai New Area[J]. Rock and Soil Mechanics, 2013, 34(9):2442-2448.(in Chinese)
[4] 高文华, 刘正, 刘栋, 等. 分级加卸载下深部粉砂岩三轴蠕变特性试验研究[J]. 自然灾害学报, 2012, 21(5):127-134. GAO Wenhua, LIU Zheng, LIU Dong, et al. Experimental study on triaxial creep behavior of deep siltstone under stepwise loading and unloading[J]. Journal of Natural Disasters, 2012, 21(5):127-134.(in Chinese)
[5] 施小清, 薛禹群, 吴吉春, 等. 饱和砂性土流变模型的试验研究[J]. 工程地质学报, 2007, 15(2):212-216. SHI Xiaoqing, XUE Yuqun, WU Jichun, et al. Uniaxial compression tests for creep model of saturated sand in Changzhou[J]. Journal of Engineering Geology, 2007, 15(2):212-216.(in Chinese)
[6] 肖宏彬, 肖果, 贺聪, 等. 高堑方路基膨胀土非线性剪切蠕变模型研究[J]. 自然灾害学报, 2013, 22(3):259-264. XIAO Hongbin, XIAO Guo, HE Cong, et al. Experimental study on non-linear shear creep model of expansive soils in high cutting roadbed[J]. Journal of Natural Disasters, 2013, 22(3):259-264.(in Chinese)
[7] 宁行乐, 肖宏彬, 张春晓, 等. 膨胀土非线性蠕变模型研究[J]. 自然灾害学报, 2017, 26(1):149-155. NING Xingle, XIAO Hongbin, ZHANG Chunxiao, et al. Study on the nonlinear creep model of expansive soil[J]. Journal of Natural Disasters, 2017, 26(1):149-155.(in Chinese)
[8] 李珍玉, 肖宏彬, 金文婷, 等. 南宁膨胀土非线性流变模型研究[J]. 岩土力学, 2012, 33(8):2297-2302. LI Zhenyu, XIAO Hongbin, JIN Wenting, et al. Study of nonlinear rheological model of Nanning expansive soils[J]. Rock and Soil Mechanics, 2012, 33(8):2297-2302.(in Chinese)
[9] Berilgen S A, Bicer P, Mehnet M, et al. Assessment of consolidation behavior of Golden Horn marine dredged material[J]. Marine Georesources and Geotechnology, 2006, 24(1):1-16.
[10] de Vasconcellos J F V, Singh S, Sivakugan N. Sensitivity analysis of time dependent settlements in hydraulic fills[J]. Geotechnical and Geological Engineering, 2010, 28(4):351-360.
[11] Zhengjiang P, Jianmin H U. Shear creep and long-term strength test research on unconformity plane[J]. Rock and Soil Mechanics, 2006, 27(1):179-191.
[12] Yin Z Y, Chang C S, Karstunen M, et al. An anisotropic elastic-viscoplastic model for soft clays[J]. International Journal of Solids and Structures, 2010, 47(5):665-677.
[13] 李守义, 廖元庆. 某工程库区滑坡蠕滑特性分析[J]. 自然灾害学报, 2009, 18(6):135-140. LI Shouyi, LIAO Yuanqing. Creep behavior analysis of landslide in a project reservoir area[J]. Journal of Natural Disasters, 2009, 18(6):135-140.(in Chinese)
[14] Leoni M, Karstunen M, Vermeer P A. Anisotropic creep model for soft soils[J]. Géotechnique, 2008, 58(3):215-226.
[15] 陈晓平, 白世伟. 软土蠕变-固结特性及计算模型研究[J]. 岩石力学与工程学报, 2003, 22(5):728-734. CHEN Xiaoping, BAI Shiwei. Research on creep-consolidation characteristics and calculating model of soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(5):728-734.(in Chinese)
[16] 杨爱武, 张兆杰, 孔令伟. 不同应力状态下软黏土蠕变特性试验研究[J]. 岩土力学, 2014, 35(增2):53-60. YANG Aiwu, ZHANG Zhaojie, KONG Lingwei. Experimental study of creep property of soft clay under different stress conditions[J]. Rock and Soil Mechanics, 2014, 35(S2):53-60.(in Chinese)
[17] 杨爱武, 闫澍旺, 杜东菊. 结构性吹填软土蠕变模型研究[J]. 岩土力学, 2012, 33(11):3213-3218+3224. YANG Aiwu, YAN Shuwang, DU Dongju. Study of creep model of structural soft dredger fill[J]. Rock and Soil Mechanics, 2012, 33(11):3213-3218+3224.(in Chinese)
[18] 杜冬菊, 杨爱武, 刘举, 等. 天津滨海吹填土[M]. 北京:科学出版社, 2010. DU Dongju, YANG Aiwu, LIU Ju, et al. Dredger fill of Tianjin Binhai Area[M]. Beijing:Science Press, 2010.(in Chinese)
[19] 陈宗基.固结及时间效应的单维问题[J].土木工程学报, 1958, 5(1):1-10. CHEN Zongji. One-dimensional problem with consolidation and time efficiency[J]. China Civil Engineering Journal, 1958, 5(1):1-10.(in Chinese)
[20] 杨爱武, 刘琦, 闫澍旺, 等. 结构性吹填软土流变等时曲线研究[J]. 煤田地质与勘探, 2012, 40(6):58-62. YANG Aiwu, LIU Qi, YAN Shuwang, et al. Rheological isochronous curve of the structural soft dredger fill[J]. Coal Geology & Exploration, 2012, 40(6):58-62.(in Chinese)
[21] Kondner R L. Hyperbolic stress-strain response:cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1):115-144.
[22] 朱纪斐, 姚兆明, 陈军浩. 人工冻结深部软岩单轴力学性能试验及蠕变模型[J]. 力学与实践, 2016, 38(6):651-657. ZHU Jifei, YAO Zhaoming, CHEN Junhao. The uniaxial mechanical performance test and creep model of artificial frozen deep soft rock[J]. Mechanics in Engineering, 2016, 38(6):651-657.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2019-09-03;改回日期:2020-03-04。
基金项目:国家自然科学基金项目(51978440);天津市科技计划项目(19JCZDJC39700,2016CJ01)
作者简介:杨爱武(1971-),男,教授,博士,博士生导师,主要从事软粘土力学特性及土体微观结构研究.E-mail:tulilab@163.com
更新日期/Last Update: 1900-01-01