[1]寇佳亮,刘菲菲,赵丹丹,等.常温养护条件下活性粉末混凝土抗硫酸盐侵蚀性能试验研究[J].自然灾害学报,2020,29(03):076-88.[doi:10.13577/j.jnd.2020.0309]
 KOU Jialiang,LIU Feifei,ZHAO Dandan,et al.Experimental study on resistance to sulfate attack of active powder concrete under normal temperature curing condition[J].,2020,29(03):076-88.[doi:10.13577/j.jnd.2020.0309]
点击复制

常温养护条件下活性粉末混凝土抗硫酸盐侵蚀性能试验研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年03期
页码:
076-88
栏目:
出版日期:
2020-06-28

文章信息/Info

Title:
Experimental study on resistance to sulfate attack of active powder concrete under normal temperature curing condition
作者:
寇佳亮12 刘菲菲1 赵丹丹1 陈俊豪1 张浩博12
1. 西安理工大学 土木建筑工程学院, 陕西 西安 710048;
2. 西安理工大学省部共建西北旱区生态水利国家重点实验室, 陕西 西安 710048
Author(s):
KOU Jialiang12 LIU Feifei1 ZHAO Dandan1 CHEN Junhao1 ZHANG Haobo12
1. School of Civil and Architectural Engineering, Xi’an University of Technology, Xi’an 710048, China;
2. State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
关键词:
活性粉末混凝土常温养护干湿循环抗硫酸盐侵蚀耐久性能
Keywords:
reactive powder concretecuring in room temperaturewet and dry cycleresistance to sulfate attackdurable performance
分类号:
TU502+.6X9
DOI:
10.13577/j.jnd.2020.0309
摘要:
通过常温养护条件下活性粉末混凝土力学性能试验,优选3组配合比进行硫酸盐干湿循环侵蚀试验,从质量和抗压强度两个方面分析活性粉末混凝土的损伤劣化程度。试验结果表明:随着干湿循环时间的增加,活性粉末混凝土的质量和抗压强度损失率均呈现先缓慢增长后缓慢降低的趋势;同时,掺入适量的粉煤灰和硅灰,可以较好的发挥二次反应,改善试件的结构性能,提高试件密实度,增强抗侵蚀性能。配合比最优的一组活性粉末混凝土,质量损失率由-1.5%到0.2%,抗压强度损失率由-1.0%到3.3%,其质量和抗压强度损失率都较为理想,前期出现质量和抗压强度不减而增的现象,后期虽有减小但是很微弱。在饱和硫酸钠溶液的侵蚀活性粉末混凝土的基础上建立腐蚀损伤模型,即试件的抗压强度损失率与侵蚀介质浓度和侵蚀时间成正比,计算和试验结果基本吻合。
Abstract:
Through the mechanical property test of reactive powder concrete under the condition of normal temperature curing, three groups of mix proportion were selected to carry out the sulfate dry wet cyclic erosion test, and the damage and degradation degree of reactive powder concrete was analyzed from two aspects of quality and compressive strength. The test results show that with the increase of dry and wet cycle time, the quality and compressive strength loss rate of reactive powder concrete show a trend of slow growth first and then slow reduction. At the same time, adding a proper amount of fly ash and silica fume can give full play to the secondary reaction, improve the structural performance of the specimen, improve the compactness of the specimen, and increase the erosion resistance. The group of reactive powder concrete with the best mix proportion, the loss rate of mass is from -1.5% to 0.2%, the loss rate of compressive strength is from -1.0% to 3.3%, the loss rate of mass and compressive strength are both ideal, the phenomenon that the mass and compressive strength increase in the early stage and decrease in the later stage is very weak. Based on the erosion of reactive powder concrete by saturated sodium sulfate solution, a corrosion damage model is established, which means that the loss rate of compressive strength of the specimen is directly proportional to the concentration of the erosion medium and the erosion time, and the calculation results are basically consistent with the test results.

参考文献/References:

[1] Richard P, Cheyrezy M. Reactive powder concrete with high ductility and 200-800MPa compressive strength[S]. San Francisco:ACI SP, 1994,144(6):507-518.
[2] 徐培福, 傅学怡, 王翠坤, 等. 复杂高层建筑结构设计[M]. 北京:中国建筑工业出版社, 2005. XU Peifu, FU Xueyi, WANG Cuikun, et al. Design of Complex High-Rise Building Structures[M]. Beijing:China Construction Industry Press, 2005.(in Chinese)
[3] O. Bayard, O. Plé. Fracture mechanics of reactive powder concrete:material modelling and experimental investigations[J]. Engineering Fracture Mechanics, 2003, 70(7):839-851.
[4] Pierre Richard, Marcel Cheyrezy. Composition of reactive powder concretes[J]. Cement and Concrete Research, 1995, 25(7):1501-1511.
[5] 屈文俊, 邬生吉, 秦宇航.活性粉末混凝土力学性能试验[J].建筑科学与工程学报, 2008, 25(4):13-18. QU Wenjun, WU Shengji, QIN Yuhang. Mechanical properties test of reactive powder concrete[J]. Journal of Architectural Science and Engineering, 2008, 25(4):13-18.
[6] A. Feylessoufi, F. Villiéras, L.J. Michot, P. De Donato, J.M. Cases, P. Richard. Water environment and nanostructural network in a reactive powder concrete[J]. Cement and Concrete Composites, 1996, 18(1):23-29.
[7] Yue Wang, Mingzhe An, Ziruo Yu, et al. Experimental and cellular-automata-based analysis of chroride ion diffusion in reactive powder concrete subjected to freeze-thaw cycling[J].Construction and Building Materials, 2018,172:760-769.
[8] 陈正, 杨绿峰, 冯庆革, 等.高性能混凝土的氯离子扩散及服役寿命研究[J].建筑材料学报, 2010, 13(2):222-227,231. CHEN Zheng, YANG Lufeng, FENG Qingge, et al. Study on chloride ion diffusion and service life of high performance concrete[J]. Journal of Building Materials, 2010, 13(2):222-227,231.
[9] Zhang Yunlong, Wu Bin, Wang Jing, et al. Reactive powder concrete mix ratio and steel fiber content optimization under different curing conditions[J]. Materials (Basel, Switzerland), 2019, 12(21):3615.
[10] 寇佳亮, 刘云昊, 张浩博. 活性粉末混凝土力学性能及耐久性能试验研究[J]. 建筑结构, 2018, 48(2):48-54,47. KOU Jialiang, LIU Yunhao, ZHANG Haobo. Experimental study on mechanical properties and durability of reactive powder concrete[J]. Architectural Structure, 2018, 48(2):48-54,47.
[11] 刘斯凤, 孙伟, 林玮, 等. 掺天然超细混合材高性能混凝土的制备及其耐久性研究[J]. 硅酸盐学报, 2003,31(11):1080-1085. LIU Sifeng, SUN Wei, LIN Wei, et al. Study on the preparation and durability of high performance concrete with natural superfine mixtures[J]. Journal of Portland, 2003,31(11):1080-1085.
[12] 何峰, 黄政宇, 易伟建.活性粉末混凝土的耐酸性[J].自然灾害学报, 2011, 20(2):44-49. HE Feng, HUANG Zhengyu, YI Weijian. Acid resistance of reactive powder concrete[J]. Journal of Natural Disasters, 2011, 20(2):44-49.
[13] Nadiger A, Madhavan M K. Influence of mineral admixtures and fibers on workability and mechanical properties of reactive powder concrete[J]. Journal of Materials in Civil Engineering, 2019, 31(2):1-12.
[14] GB/T17671-1999水泥胶砂强度检验方法(ISO法)[S].北京:中国建筑工业出版,1999. GB/T 17671-1999 Test Method for Strength of Cement Mortar (ISO Method)[S]. Beijing:China Construction Industry Press, 1999.
[15] GB/T50082-2009普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版,2009. GB/T50082-2009 Standard for Test Methods of Long-Term Performance and Durability of Ordinary Concrete[S]. Beijing:China Construction Industry Press, 2009.
[16] 高润东, 赵顺波, 李庆斌, 等.干湿循环作用下混凝土硫酸盐侵蚀劣化机理试验研究[J].土木工程学报, 2010, 43(2):48-54. GAO Rundong, ZHAO Shunbo, LI Qingbin, et al. Experimental study on the mechanism of sulfate corrosion degradation of concrete under the action of dry wet cycle[J]. Journal of Civil Engineering, 2010, 43(2):48-54.
[17] 田威, 王震, 韩女.硫酸盐侵蚀作用下混凝土细观破损机理研究[J].防灾减灾工程学报, 2019, 39(1):16-22,60. TIAN Wei, WANG Zhen, HAN Nü. Study on meso damage mechanism of concrete under sulfate attack[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(1):16-22, 60.
[18] 曹双寅, 朱伯龙.受腐蚀混凝土和钢筋混凝土的性能[J].同济大学学报, 1990,18(2):239-242. CAO Shuangyin, ZHU Bolong. Properties of corroded concrete and reinforced concrete[J]. Journal of Tongji University, 1990, 18(2):239-242.
[19] 赵庆新, 李东华, 闫国亮, 等.受损混凝土抗硫酸盐腐蚀性能[J].硅酸盐学报, 2012, 40(2):217-220. ZHAO Qingxin, LI Donghua, YAN Guoliang, et al. Sulfate corrosion resistance of damaged concrete[J]. Journal of Portland, 2012, 40(2):217-220.

相似文献/References:

[1]何峰,黄政宇,易伟建.活性粉末混凝土的耐酸性[J].自然灾害学报,2011,20(02):044.
 HE Feng,HUANG Zheng-yu,YI Wei-jian.Acid-resistance performance of reactive powder concrete[J].,2011,20(03):044.

备注/Memo

备注/Memo:
收稿日期:2019-12-12;改回日期:2020-03-01。
基金项目:国家自然科学基金项目(51408487);陕西省自然科学基金研究计划项目(2020JM-454);中国博士后科学基金第56批面上资助项目(2014M562437);陕西省博士后科学基金资助项目
作者简介:寇佳亮(1979-),男,副教授,博士,从事高性能纤维混凝土力学性能研究.E-mail:jialiangkou0918@163.com
更新日期/Last Update: 1900-01-01