[1]张晋韬,王芳.《巴黎协定》排放情景下中亚地区极端温度变化响应[J].自然灾害学报,2020,29(03):119-128.[doi:10.13577/j.jnd.2020.0313]
 ZHANG Jintao,WANG Fang.Extreme temperature change in central Asia in responses to national-committed emission reductions under the Paris Agreement[J].,2020,29(03):119-128.[doi:10.13577/j.jnd.2020.0313]
点击复制

《巴黎协定》排放情景下中亚地区极端温度变化响应
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年03期
页码:
119-128
栏目:
出版日期:
2020-06-28

文章信息/Info

Title:
Extreme temperature change in central Asia in responses to national-committed emission reductions under the Paris Agreement
作者:
张晋韬12 王芳1
1. 中国科学院地理科学与资源研究所 中国科学院陆地表层格局与模拟重点实验室, 北京 100101;
2. 中国科学院大学 资源与环境学院, 北京 100049
Author(s):
ZHANG Jintao12 WANG Fang1
1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
国家自主贡献(INDC)中亚极端温度排放巴黎协定
Keywords:
INDC pledgeCentral Asiaextreme temperatureemissionParis Agreement
分类号:
P4X43X9
DOI:
10.13577/j.jnd.2020.0313
摘要:
为了应对全球气候变化,《巴黎协定》没有强制规定各国的温室气体排放量,而是各国以"自主贡献"(INDC)的方式参与全球温室气体减排行动。国家自主贡献减排的气候响应是当今气候变化科学界的热点问题。目前缺少对于自主贡献目标情景下的区域极端温度变化的研究。本文基于32个全球气候模式的模拟,采用九个温度极值指数,研究了中亚地区INDC目标情景下极端温度的变化特征。结果表明INDC目标情景相对现代气候期,中亚地区极端高温事件显著增加,而极端低温事件显著减少。夜间低温的上升幅度大于日间高温。不同极端温度指标变化的空间分布型有所差异,帕米尔高原和高纬度地区是主要的变化敏感区。本研究还进一步发现中亚地区的大部分温度极值指数与全球平均温升呈近似线性的关系。如果加强减排行动,将全球平均温升控制在较低水平,极端温度事件的变化将显著减少。
Abstract:
The aim of Paris Agreement is to strengthen the global greenhouse gas emission reduction action to hold global warming. To achieve this goal, countries submitted mitigation plans in the form of "Intended Nationally Determined Contributions" (INDC). The climate response to INDC emission reduction is a focus in climate change research. However, few studies evaluated the possible changes in regional extreme temperature under the INDC emission pledges. In this research, the simulations of 32 global climate models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) were applied to investigate the changes in extreme temperatures in Central Asia under INDC-pledge scenario above present-day level, characterized by nine extreme temperature indices. Our results show that future extreme high temperature events were estimated to increase significantly, while extreme low temperature events were estimated to decrease significantly. Nighttime warm extremes were projected to increase more than daytime warm extremes. There are some differences in the spatial patterns of changes in various extreme temperature indices. The Pamirs and high latitudes are the most sensitive areas of extreme temperature changes. We further found an approximately linear relationship between most regional extreme temperature indices and global mean warming. Our results indicate that if global emission reductions are further strengthened to achieve the ambitious temperature target of global 2℃ or 1.5℃ goals, the avoidance on regional extreme temperature events is projected to be pronounced.

参考文献/References:

[1] IPCC. Climate Change 2014:Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK, and New York, NY, USA:Cambridge University Press, 2014.
[2] 蔡元刚, 吴婷婷, 张文千, 等. 基于REOF的四川省高温热浪时空分布特征分析[J]. 自然灾害学报, 2018, 27(2):201-208. CAI Yuangang, WU Tingting, ZHANG Wenqian, et al. Spatial and temporal distribution characteristics of heatwave in Sichuan Province based on REOF[J]. Journal of Natural Disasters, 2018, 27(2):201-208. (in Chinese)
[3] 贺山峰, 戴尔阜, 葛全胜, 等. 中国高温致灾危险性时空格局预估[J]. 自然灾害学报, 2010, 19(2):91-97. HE Shanfeng, DAI Erfu, GE Quansheng, et al.Pre-estimation of spatiotemporal pattern of extreme heat hazard in China[J]. Journal of Natural Disasters, 2010, 19(2):91-97. (in Chinese)
[4] 李志, 郑粉莉, 刘文兆. 黄土高原极端温度事件的时空变化[J]. 自然灾害学报, 2011, 20(6):6-12. LI Zhi, ZHENG Fenli, LIU Wenzhao.Study on spatiotemporal changes of extreme temperature events in Loess Plateau[J]. Journal of Natural Disasters, 2011, 20(6):6-12. (in Chinese)
[5] 李敏敏,延军平.华北农牧交错带极端高温时空分布特征[J].自然灾害学报, 2014, 23(3):190-199. LI Minmin, YAN Junping.Spatiotemporal distribution of extreme maximum temperature in agro-pastoral zone of north China[J]. Journal of Natural Disasters, 2014, 23(3):190-199. (in Chinese)
[6] 殷淑燕, 黄春长, 查小春. 论极端性洪水灾害与全球气候变化——以汉江和渭河洪水灾害为例[J]. 自然灾害学报, 2012, 21(5):41-48. YIN Shuyan, HUANG Chunchang, ZHA Xiaochun. On extreme flood disasters and global climate change:a case study of floodings of Hanjing River[J]. Journal of Natural Disasters, 2012, 21(5):41-48. (in Chinese)
[7] Zhang X, Alexander L, Hegerl G C, et al. Indices for monitoring changes in extremes based on daily temperature and precipitation data[J]. Wiley Interdisciplinary Reviews:Climate Change, 2011, 2(6):851-870.
[8] Alexander L V, Zhang X, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research:Atmospheres, 2006, 111(D5).
[9] Frich P, Alexander L V, Della-Marta P, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century[J]. Climate Research, 2002, 19(3):193-212.
[10] Sillmann J, Kharin V V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble:Part 2. Future climate projections[J]. Journal of Geophysical Research:Atmospheres, 2013, 118(6):2473-2493.
[11] Zhou B, Wen Q H, Xu Y, et al. Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J]. Journal of Climate, 2014, 27(17):6591-6611.
[12] 张秀伟,赵景波.1956-2012年太原市极端气温变化研究[J]. 自然灾害学报, 2015, 24(1):77-87. ZHANG Xiuwei, ZHAO Jingbo.Extreme temperature change in Taiyuan City during 1956-2012[J]. Journal of Natural Disasters, 2015, 24(1):77-87. (in Chinese)
[13] Li P, Qian H, Howard K W F, et al. Building a new and sustainable "Silk Road economic belt"[J]. Environmental Earth Sciences, 2015, 74(10):7267-7270.
[14] Frachetti M D, Smith C E, Traub C M, et al. Nomadic ecology shaped the highland geography of Asia’s Silk Roads[J]. Nature, 2017, 543:193.
[15] Li P, Qian H, Zhou W. Finding harmony between the environment and humanity:an introduction to the thematic issue of the Silk Road[J]. Environmental Earth Sciences, 2017, 76(3):105.
[16] UNFCCC. Adoption of the Paris Agreement:Proposal by the President[R]. Geneva, 2015.
[17] UNFCCC. Synthesis report on the aggregate effect of the intended nationally determined contributions[R]. Paris, 2015.
[18] UNFCCC. National Inventory Submissions[EB/OL]. https://unfccc.int/process-and-meetings/transparency-and-reporting/reporting-and-review-under-the-convention/greenhouse-gas-inventories-annex-i-parties/national-inventory-submissions-2019,2020-03-23.
[19] Sanderson B M, O’neill B C, Tebaldi C. What would it take to achieve the Paris temperature targets?[J]. Geophysical Research Letters, 2016, 43(13):7133-7142.
[20] Rogelj J, Den Elzen M, H?ne N, et al. Paris Agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534:631.
[21] UNEP. The Emissions Gap Report[R]. Nairobi, 2017.
[22] Fawcett A A, Iyer G C, Clarke L E, et al. CLIMATE POLICY. Can Paris pledges avert severe climate change?[J]. Science, 2015, 350(6265):1168-1169.
[23] Zhang J, Wang F. Extreme Precipitation in China in Response to Emission Reductions under the Paris Agreement[J]. Water, 2019, 11(6).
[24] 王芳,张晋韬.《巴黎协定》排放情景下中亚地区降水变化响应[J].地理学报,2020, 75(1):25-40. WANG Fang, ZHANG Jintao. Response of precipitation change in Central Asia to emission scenarios consistent with the Paris Agreement[J]. Acta Geographica Sinica, 2020, 75(1):25-40. (in Chinese)
[25] Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2011, 93(4):485-498.
[26] Reichler T, Kim J. How well do coupled models simulate today’s climate?[J]. Bulletin of the American Meteorological Society, 2008, 89(3):303-312.
[27] Pierce D W, Barnett T P, Santer B D, et al. Selecting global climate models for regional climate change studies[J]. Proceedings of the National Academy of Sciences, 2009, 106(21):8441.
[28] Zhang X, Hegerl G, Zwiers F W, et al. Avoiding inhomogeneity in percentile-based indices of temperature extremes[J]. Journal of Climate, 2005, 18(11):1641-1651.
[29] Knutti R, Rogelj J, Sedlá? ek J, et al. A scientific critique of the two-degree climate change target[J]. Nature Geoscience, 2015, 9:13.
[30] Seneviratne S I, Donat M G, Pitman A J, et al. Allowable CO2 emissions based on regional and impact-related climate targets[J]. Nature, 2016, 529:477.
[31] Wang X, Jiang D, Lang X. Future extreme climate changes linked to global warming intensity[J]. Science Bulletin, 2017, 62(24):1673-1680.
[32] Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth’s climate system[J]. Proceedings of the National Academy of Sciences, 2008, 105(6):1786-1793.
[33] Gao X, Shi Y, Zhang D, et al. Climate change in China in the 21st century as simulated by a high resolution regional climate model[J]. Chinese Science Bulletin, 2012, 57(10):1188-1195.

备注/Memo

备注/Memo:
收稿日期:2019-07-11;改回日期:2019-12-19。
基金项目:中国科学院A类战略性先导科技专项(XDA20020202);国家重点研发计划项目(2019YFC0507805,2016YFA0602704);国家自然科学基金项目(41771050)
作者简介:张晋韬(1995-),男,硕士研究生,主要从事全球变化研究.E-mail:zhangjt.17s@igsnrr.ac.cn
通讯作者:王芳(1979-),女,副研究员,博士,主要从事全球变化研究.E-mail:wangf
更新日期/Last Update: 1900-01-01