[1]薛景宏,王香,董孝曜.断层两侧差异性土壤冻融对埋地管道力学性能影响研究[J].自然灾害学报,2020,29(03):138-144.[doi:10.13577/j.jnd.2020.0315]
 XUE Jinghong,WANG Xiang,DONG Xiaoyao.Study on the influence of different soil freezing-thawing at both sides of the fault on the mechanical properties of buried pipelines[J].,2020,29(03):138-144.[doi:10.13577/j.jnd.2020.0315]
点击复制

断层两侧差异性土壤冻融对埋地管道力学性能影响研究
分享到:

《自然灾害学报》[ISSN:/CN:23-1324/X]

卷:
29
期数:
2020年03期
页码:
138-144
栏目:
出版日期:
2020-06-28

文章信息/Info

Title:
Study on the influence of different soil freezing-thawing at both sides of the fault on the mechanical properties of buried pipelines
作者:
薛景宏12 王香1 董孝曜1
1. 东北石油大学 土木建筑工程学院, 黑龙江 大庆 163318;
2. 中国地震局工程力学研究所, 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080
Author(s):
XUE Jinghong12 WANG Xiang1 DONG Xiaoyao1
1. School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China;
2. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
跨断层埋地管道差异性土壤冻胀与融沉温度场力学性能
Keywords:
buried pipelines across faultsdifferent soils propertiesfrost heave and thaw sinktemperature fieldmechanical properties
分类号:
TU832TU41X9
DOI:
10.13577/j.jnd.2020.0315
摘要:
季节性冻土区埋地管道遇到的最常见问题是冻融循环引起的管道冻胀与融沉,不仅给管道带来附加应力与变形,而且在特定的条件下容易造成破坏,引起严重灾害。通过ABAQUS软件对跨断层埋地管道与土壤系统进行热力耦合数值模拟,建立冻融循环情况下管-土相互作用模型,分析断层两侧土壤性质相同与差异情况下管道应力分布规律。当断层两侧土质相同时,管道总应力与轴向应力在最高或最低温度下都接近于相同,但是当断层两侧土壤性质不同时,管道最大应力与最大轴向应力明显大于断层两侧土壤性质相同时的应力,且均出现在距离断层一定位置处。管道内部承压会导致相应的最大总应力和轴向应力增加,同时低温和高温时的最大应力差值变化规律改变。断层处埋地管道土壤回填时宜采用相同或者渐变的土质,否则应采取特殊的抗冻胀措施,对断层错动与断层两侧土壤性质差异同时出现时的管土作用机理与灾害预估需进一步研究。
Abstract:
The most common problems of buried pipelines in seasonal tundra are frost-heave and thaw-sink, which not only bring additional stress and deformation, but also cause serious damage under certain conditions. Thermal-mechanical coupling simulation for the pipeline-soil system was conducted by ABAQUS, and the pipe-soil interaction model under the condition of freezing and thawing was established. The stress distribution of the pipeline was analyzed for the same and different soil properties at both sides of the fault. When the same, the total stress and axial stress of the pipeline’s everywhere are nearly same at the highest or lowest soil surface temperature.However, when different, the maximum total stress and axial stress of the pipeline are significantly larger than those under the same soil condition, and appear at a certain distance from the fault. The internal pressure of the pipeline increase the maximum total stress and axial stress, and the maximum-stress difference values between low and high temperatures change. The backfill should be of same or gradually changing properties at the fault, otherwise, special antifreeze measures should be adopted. The mechanism of soil-pipe interaction and disaster prediction, when fault action and soil property differences take place on the same time, should be studied further.

参考文献/References:

[1] He R, Jin H. Permafrost and cold-region environmental problems of the oil product pipeline from Golmud to Lhasa on the Qinghai-Tibet Plateau and their mitigation[J]. Cold Regions Science & Technology, 2010, 64(3):279-288.
[2] 郑平, 马贵阳. 冻土区埋地输油管道温度场数值模拟研究[J]. 油气储运, 2006, 25(8):25-28. ZHENG Ping, MA Guiyang. Numerical simulation of temperature field of buried oil pipeline in permafrost regions[J]. Oil & Gas Storage and Transportation, 2006, 25(8):25-28.(in Chinese)
[3] 何树生,喻文兵,陈文国,等.东北多年冻土区埋地输油管道周围温度场特征非线性分析[J]. 冰川冻土, 2008, 30(2):287-295. HE Shusheng, YU Wenbing, CHEN Wenguo, et al. Non-linear analysis of temperature fields around the buried oil-pipeline in permafrost regions, Northeast China[J]. Journal of Glaciology and Geocryology, 2008, 30(2):287-295.
[4] HuiJun J, Brewer M C. Experiences and lessons learned in the engineering design and construction in the Alaska Arctic[J]. Journal of Glaciology & Geocryology, 2005, 27(1):140-146.
[5] Hawlader B C, Morgan V, Clark J I. Modelling of pipeline under differential frost heave considering post-peak reduction of uplift resistance in frozen soil[J]. Canadian Geotechnical Journal, 2006, 43(3):282-293.
[6] 林名桢, 李传宪, 杨飞. 管道埋深对稳定运行热油管道热力特性的影响[J]. 石油化工高等学校学报, 2008, 21(3):63-67. LIN Mingzhen, LI Chuanxian, YANG Fei. Effect of buried depth on thermodynamic properties of hot oil pipeline in steady operation[J]. Journal of Petrochemical Universities, 2008, 21(3):63-67.(in Chinese)
[7] Johnson Elden R, Hegdal Lorena A. Permafrost-related performance of the TransAlaska oil pipeline[C]//Proceedings of the Ninth International Conference on Permafrost. Fairbanks AK, 2008, 857-864.
[8] Wen Z, Sheng Y, Jin H, et al. Thermal elasto-plastic computation model for a buried oil pipeline in frozen ground[J]. Cold Regions Science and Technology, 2010, 64(3):248-255.
[9] Zhang J, Qu G, Jin H. Estimates on thermal effects of the China-Russia crude oil pipeline in permafrost regions[J]. Cold Regions Science & Technology, 2010, 64(3):243-247.
[10] 齐浩, 马贵阳, 孟向楠,等. 不同埋深热油管道数值计算[J]. 石油化工高等学校学报, 2012, 25(6):65-68. QI Hao, MA Guiyang, MENG Xiangnan, et al. Different buried depth hot oil pipeline numerical calculation[J]. Journal of Petrochemical Universities, 2012, 25(6):65-68.(in Chinese)
[11] Xiangdong Hu. Analytical solution to steady-state temperature field of two freezing pipes with diferent temperatures[J]. Journal of Shanghai Jiaotong University(Science), 2013, 18(6):706-711.
[12] Zhiwu Z,Guozheng K, Yue M, et al. Temperature damage and constitutive model of frozen soil under dynamic loading[J]. Mechanics of Materials, 2016, 102:108-116.
[13] 刘爱文, 胡聿贤, 李小军,等. 大口径埋地钢管在地震断层作用下破坏模式的研究[J]. 工程力学, 2005,22(3):90-95. LIU Aiwen, HU Yuxian, LI Xiaojun, et al. Damage behavior of large-diameter buried steel pipelines under fault movements[J]. Engineering Mechanics, 2005, 22(3):90-95. (in Chinese)
[14] 杨汗青, 郭恩栋, 赵宇,等. 管道穿越断层最佳交叉角度研究[J]. 世界地震工程, 2012,28(4):13-18. YANG Hanqing, GUO Endong, ZHAO Yu, et al. Study on optimal crossing angle of pipeline passing through fault[J]. World Earthquake Engineering, 2012, 28(4):13-18.(in Chinese)
[15] 李鸿晶,金浏. 穿越断层埋地管线反应数值模拟-建模中的几个具体问题[J]. 自然灾害学报, 2011, 20(3):151-15.6. LI Hongjing,JIN Liu. Numerical response simulation of buried pipeline crossing earthquake fault-some relative problem in modelling[J]. Journal of Natural Disasters, 2011, 20(3):151-156.(in Chinese)
[16] 赵旭阳,赵宇. 横向通过滑坡输油气管道应变响应分析[J]. 自然灾害学报, 2014, 23(4):250-256. ZHAO Xuyang, ZHAO Yu. Strain response analysis of oil and gas pipelines subject to lateral landslides[J].Journal of Natural Disasters, 2014, 23(4):250-256.(in Chinese)
[17] Milong L. Cooling effect of ripped-stone embankments on Qing-Tibet railway under climatic warming[J]. Chinese Science Bulletin, 2003, 48(6):598-604.
[18] 吉延峻, 金会军, 张建明,等. 中俄原油管道沿线典型土样冻胀性试验研究[J]. 冰川冻土, 2008, 30(2):296-300. JI Yanjun, JIN Huijun, ZHANG Jianming, et al. Experimental study of the fros-heaving ratio of the typical soil samples along the China-Russian crude oil pipeline[J]. Journal of Glaciology and Geocryology, 2008, 30(2):296-300.(in Chinese)
[19] 毛卫南. 冻土区输油管道服役性能研究与评价[D]. 北京:北京交通大学, 2015. MAO Weinan. Study and Evaluation of Oil Pipeline Service Performance in Permafrost Area[D]. Beijing:Beijing Jiaotong University, 2015.(in Chinese)
[20] Vazouras P, Karamanos S A, Dakoulas P. Finite element analysis of buried steel pipelines under strike-slip fault displacements[J]. Soil Dynamics & Earthquake Engineering, 2010, 30(11):1361-1376.

备注/Memo

备注/Memo:
收稿日期:2019-12-26;改回日期:2020-03-09。
基金项目:中国地震局工程力学研究所基本科研业务费专项资助项目(2020D25);国家自然科学基金项目(51178087)
作者简介:薛景宏(1968-),男,教授,博士,主要从事防灾减灾工程及防护工程.E-mail:xjh0459@126.com
通讯作者:王香(1995-),女,硕士研究生,主要从事防灾减灾工程及防护工程.E-mail:1443826069@qq.com
更新日期/Last Update: 1900-01-01